南京理工大学革新3D成像技术:深度学习助力低成本高速成像
在科技迅速发展的今天,3D成像技术已成为光学计量和信息领域的重要研究方向。南京理工大学的一个团队最近取得了突破性进展,他们利用深度学习技术,使得传统的低速相机能够实现高分辨率、高速的3D成像。这一成果不仅降低了成本,还提高了空间和时间分辨率,为工业检测、生物医学研究等领域带来了革命性的改变。

深度学习多路复用FPP(DLMFPP)方法的创新
南京理工大学的科研团队开发了一种名为深度学习多路复用FPP(DLMFPP)的新型3D成像技术。这项技术通过结合计算成像和深度学习,在空间中编码时间信息,成功克服了低成本相机硬件速度的限制。DLMFPP方法不仅提高了相机的成像速度,还保持了3D图像的像素分辨率和信噪比(SNR),这是传统低速相机难以实现的。
技术细节与特点
DLMFPP技术利用数字微镜器件的高时间分辨率能力和频域复用,将时间信息编码在一个复用条纹图案中。这种方法消除了传感器帧速率对3D成像速度的限制,使得使用传统低速相机的3D帧速率几乎可以提高一个数量级。DLMFPP在其投影策略中使用了具有不同倾斜角度的条纹图案序列,当投影速度超过相机速度时,相机将捕获与条纹图案序列叠加的复用图像。通过使用嵌入了傅里叶变换和集成学习的深度神经网络,DLMFPP能够将图像解码为其原始序列,实现高保真的解耦。
实验验证与成果
研究人员通过对瞬态场景的实验演示,验证了DLMFPP的有效性和多功能性。实验表明,DLMFPP可以使用运行频率约为100Hz的低速相机实现高速千赫兹3D成像,而不会影响图像分辨率。这一成果表明,DLMFPP方法能够克服成像探测器硬件的物理限制,使慢速扫描相机能够以高时空分辨率定量研究动态过程。
DLMFPP技术的压缩成像模式具有低成本、降低带宽和内存要求以及低功耗等多种优势。与传统的计算成像技术不同,DLMFPP不依赖于空间编码器或其他复杂的光学调制硬件,通过使用简单的光路,避免了光子损失,确保了3D成像的高SNR。这项技术几乎可以在任何现成的FPP系统上实现,为高速和超高速3D成像技术的进一步发展开辟了新途径。南京理工大学的这一研究成果,不仅推动了3D成像技术的发展,也为相关领域的研究和应用提供了新的可能性。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
