【光学前沿】北京大学王教授团队在集成微腔色散设计领域取得新进展
在信息技术飞速发展的今天,电子芯片在计算速度和功耗方面遭遇了前所未有的挑战。面对这一困境,光子集成芯片以其高速率、大带宽、低功耗和高密度集成等优势,成为突破传统集成电路物理极限的关键技术,尤其在人工智能、万物互联、云计算等领域对高速率、大容量信息处理的需求日益迫切。
一、光子集成芯片与微腔光梳技术
光子集成芯片的核心之一是微腔光梳技术,它能够在频域上产生等频率间隔的多波长激光,在时域上表现为周期性光脉冲。这种独特的时频特性为计量学、精密传感等领域带来了突破性变革。随着基于集成光学微腔内光学非线性的集成微腔光梳技术的兴起,如何通过参数设计得到符合应用需求的光学频率梳,尤其是基于集成微腔色散设计的光梳状态调控,成为了研究的热点。
二、色散对微腔光梳状态的影响
微腔光梳的产生依赖于微腔内谐振模式间的增益与损耗,以及非线性与色散的平衡。色散,即微腔材料与结构导致的群折射率关于光波长的响应,直接影响了腔内支持的锁模脉冲,即锁模微腔光梳的时域与频域特性。通过对微腔谐振频率的多项式展开,可以得到不同阶次的色散系数,这些系数对微腔光梳的产生和特性有着决定性的影响。
三、基于波导结构的色散调控
在集成平台上,一般使用闭合波导组成微腔。通过对波导结构的参数调节,如波导的宽度、高度、材料组成,可以实现对色散的调控。例如,在集成氮化硅平台上,通过调节波导宽度可以使波导工作在反常色散区。此外,渐变波导宽度等方法也可以实现对腔体整体色散的调节。
四、基于光子晶体结构的色散调控
光子晶体环因其在微腔内壁刻蚀周期性结构而受到关注。这种结构在满足布拉格条件的波长处,微腔内正向与反向的光场间发生耦合,导致谐振峰劈裂,从而产生局部色散改变。这种设计可以实现灵活的色散设计,但对加工工艺提出了较高要求。
五、基于耦合环系统的色散调控
除了单个环内正反向光场间耦合外,还可以通过控制两个环间的光场耦合引入谐振峰劈裂,实现色散调控。这种色散改变机制已经被用于实现高转换效率亮孤子光梳与暗脉冲光梳的自激发等功能。
尽管当前色散调控机制存在一定的局限性,但先进的色散调控技术已经能够支撑面向低噪微波信号、光钟、大容量光通信、微波光子、光计算等应用需求。未来,实现工艺友好的、高自由度的、简易的、可调谐的色散调节技术仍待进一步探索研究。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30