【光学前沿】北京大学王教授团队在集成微腔色散设计领域取得新进展
在信息技术飞速发展的今天,电子芯片在计算速度和功耗方面遭遇了前所未有的挑战。面对这一困境,光子集成芯片以其高速率、大带宽、低功耗和高密度集成等优势,成为突破传统集成电路物理极限的关键技术,尤其在人工智能、万物互联、云计算等领域对高速率、大容量信息处理的需求日益迫切。

一、光子集成芯片与微腔光梳技术
光子集成芯片的核心之一是微腔光梳技术,它能够在频域上产生等频率间隔的多波长激光,在时域上表现为周期性光脉冲。这种独特的时频特性为计量学、精密传感等领域带来了突破性变革。随着基于集成光学微腔内光学非线性的集成微腔光梳技术的兴起,如何通过参数设计得到符合应用需求的光学频率梳,尤其是基于集成微腔色散设计的光梳状态调控,成为了研究的热点。
二、色散对微腔光梳状态的影响
微腔光梳的产生依赖于微腔内谐振模式间的增益与损耗,以及非线性与色散的平衡。色散,即微腔材料与结构导致的群折射率关于光波长的响应,直接影响了腔内支持的锁模脉冲,即锁模微腔光梳的时域与频域特性。通过对微腔谐振频率的多项式展开,可以得到不同阶次的色散系数,这些系数对微腔光梳的产生和特性有着决定性的影响。
三、基于波导结构的色散调控
在集成平台上,一般使用闭合波导组成微腔。通过对波导结构的参数调节,如波导的宽度、高度、材料组成,可以实现对色散的调控。例如,在集成氮化硅平台上,通过调节波导宽度可以使波导工作在反常色散区。此外,渐变波导宽度等方法也可以实现对腔体整体色散的调节。
四、基于光子晶体结构的色散调控
光子晶体环因其在微腔内壁刻蚀周期性结构而受到关注。这种结构在满足布拉格条件的波长处,微腔内正向与反向的光场间发生耦合,导致谐振峰劈裂,从而产生局部色散改变。这种设计可以实现灵活的色散设计,但对加工工艺提出了较高要求。
五、基于耦合环系统的色散调控
除了单个环内正反向光场间耦合外,还可以通过控制两个环间的光场耦合引入谐振峰劈裂,实现色散调控。这种色散改变机制已经被用于实现高转换效率亮孤子光梳与暗脉冲光梳的自激发等功能。
尽管当前色散调控机制存在一定的局限性,但先进的色散调控技术已经能够支撑面向低噪微波信号、光钟、大容量光通信、微波光子、光计算等应用需求。未来,实现工艺友好的、高自由度的、简易的、可调谐的色散调节技术仍待进一步探索研究。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
