波导方法新突破:建立引导光穿过散射材料的路径
在光传输技术领域,一项革命性的新方法——扩散波导技术,正在改变我们对光引导和控制的理解。这项由格拉斯哥大学与亚利桑那大学合作开发的方法,基于扩散过程,能够显著提高光的传输效率,即使在弯曲的路径上也能保持高效。

一、技术原理与创新应用
扩散波导技术的创新之处在于利用光子密度作为引导模式,通过嵌入散射不透明材料的核心结构来传播光。这种方法通过将光传输通过包裹在均匀、强散射介质中的弱散射材料的固体核心来引导能量流。两种材料散射特性之间的对比使光保持限制在核心内,并使光波能够以高精度引导。
这项技术的应用前景广阔,不仅可以用于未来的医学成像技术,提高对不透明生物组织内部的观察能力,还可以用于引导热量和限制中子等粒子,使其在能源传输和粒子控制领域具有潜在的应用价值。
二、实验验证与数学模型
为了验证这种新的导波方法,研究人员使用3D打印机构建了具有低散射芯的高度散射、不透明的白色树脂结构。实验结果令人振奋:通过具有低散射芯的结构传输的光比没有这种芯的结构传输的光多100倍。这一发现在直结构和弯曲结构中都得到了验证。
研究人员还开发了一个全面的数学模型来描述支撑新导波方法的物理扩散过程。这个模型不仅支持导模的存在,而且与解释热量通过固体材料传输的过程方程式非常相似,表明控制光子密度传播的方程式也适用于其他形式能量的传输,如热和中子。

三、跨领域的影响
这项技术的成功不仅在于其在光传输领域的突破,还在于其跨领域的影响力。由于其原理和应用范围的广泛性,扩散波导技术在多个领域都有潜在的应用前景,包括但不限于医学成像、能源传输和粒子控制。
四、研究发表与未来展望
这项突破性的研究发表在《自然物理学》期刊上。研究人员表示,他们将继续探索如何在未来找到新的使用方法,以充分利用这一技术在光的引导和控制方面的潜力。
随着这项技术的进一步发展和应用,我们有望看到光传输技术的巨大进步,这将为医学、能源和通信等领域带来革命性的变化。扩散波导技术,无疑将成为建立引导光穿过散射材料路径的明星技术。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
