波导方法新突破:建立引导光穿过散射材料的路径
在光传输技术领域,一项革命性的新方法——扩散波导技术,正在改变我们对光引导和控制的理解。这项由格拉斯哥大学与亚利桑那大学合作开发的方法,基于扩散过程,能够显著提高光的传输效率,即使在弯曲的路径上也能保持高效。
一、技术原理与创新应用
扩散波导技术的创新之处在于利用光子密度作为引导模式,通过嵌入散射不透明材料的核心结构来传播光。这种方法通过将光传输通过包裹在均匀、强散射介质中的弱散射材料的固体核心来引导能量流。两种材料散射特性之间的对比使光保持限制在核心内,并使光波能够以高精度引导。
这项技术的应用前景广阔,不仅可以用于未来的医学成像技术,提高对不透明生物组织内部的观察能力,还可以用于引导热量和限制中子等粒子,使其在能源传输和粒子控制领域具有潜在的应用价值。
二、实验验证与数学模型
为了验证这种新的导波方法,研究人员使用3D打印机构建了具有低散射芯的高度散射、不透明的白色树脂结构。实验结果令人振奋:通过具有低散射芯的结构传输的光比没有这种芯的结构传输的光多100倍。这一发现在直结构和弯曲结构中都得到了验证。
研究人员还开发了一个全面的数学模型来描述支撑新导波方法的物理扩散过程。这个模型不仅支持导模的存在,而且与解释热量通过固体材料传输的过程方程式非常相似,表明控制光子密度传播的方程式也适用于其他形式能量的传输,如热和中子。
三、跨领域的影响
这项技术的成功不仅在于其在光传输领域的突破,还在于其跨领域的影响力。由于其原理和应用范围的广泛性,扩散波导技术在多个领域都有潜在的应用前景,包括但不限于医学成像、能源传输和粒子控制。
四、研究发表与未来展望
这项突破性的研究发表在《自然物理学》期刊上。研究人员表示,他们将继续探索如何在未来找到新的使用方法,以充分利用这一技术在光的引导和控制方面的潜力。
随着这项技术的进一步发展和应用,我们有望看到光传输技术的巨大进步,这将为医学、能源和通信等领域带来革命性的变化。扩散波导技术,无疑将成为建立引导光穿过散射材料路径的明星技术。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30