北京大学电子学院突破多模微谐振器技术,推动光子分子开关发展
在现代通信和光电子领域,多模微谐振器技术因其在提高信号处理能力和扩展频带宽度方面的潜力而备受关注。北京大学电子学院的最新研究成果,为我们揭示了多模微谐振器中多功能光子分子开关的全新应用前景。

这项研究的核心在于利用光学超模相互作用构建人工光子分子,并通过动态控制不同空间模态之间的交互,实现光子分子在单模式和多模式工作状态之间的转换。这种“关闭/打开”功能,极大地拓宽了光子分子的应用范围。
在实验中,研究团队成功实现了一个硅微环,其本征品质因子接近1000万,自由频谱范围高达115GHz,这一成果打破了自由光谱范围-品质因子权衡的常规限制,为超宽带和高分辨率毫米波光子运转提供了可能。
此外,基于这一发现,研究人员验证了一种超宽可调谐集成毫米波光子滤波器,工作频率高达57.5GHz(U波段),具有32MHz的超窄3-dB带宽。这一成果不仅代表了硅平台上集成器件所能实现的最宽可调谐范围,同时也保持了3-dB的窄带宽,这对于6G通信技术的发展具有重要意义。
研究人员还实现了一个集成的光电振荡器,其可调谐频率范围为50GHz,这为集成微谐振器的器件设计和能量控制提供了新的视角,向下一代超高速光电应用迈出了重要一步。
这项工作不仅为量子和非线性光学的物理方面提供了新的视角,而且对于开发6G无线通信技术以提供超宽带操作具有广阔的意义。通过架构优化,可以进一步提高RF应用程序的性能,为sub-6G频段扩展到U频段的一系列应用提供支持,从而进入集成毫米波光子学领域。
总结而言,北京大学电子学院的这项研究不仅在学术上具有创新性,而且在实际应用中具有极高的价值,为未来通信技术的发展提供了强有力的技术支持。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
