北京大学电子学院突破多模微谐振器技术,推动光子分子开关发展
在现代通信和光电子领域,多模微谐振器技术因其在提高信号处理能力和扩展频带宽度方面的潜力而备受关注。北京大学电子学院的最新研究成果,为我们揭示了多模微谐振器中多功能光子分子开关的全新应用前景。
这项研究的核心在于利用光学超模相互作用构建人工光子分子,并通过动态控制不同空间模态之间的交互,实现光子分子在单模式和多模式工作状态之间的转换。这种“关闭/打开”功能,极大地拓宽了光子分子的应用范围。
在实验中,研究团队成功实现了一个硅微环,其本征品质因子接近1000万,自由频谱范围高达115GHz,这一成果打破了自由光谱范围-品质因子权衡的常规限制,为超宽带和高分辨率毫米波光子运转提供了可能。
此外,基于这一发现,研究人员验证了一种超宽可调谐集成毫米波光子滤波器,工作频率高达57.5GHz(U波段),具有32MHz的超窄3-dB带宽。这一成果不仅代表了硅平台上集成器件所能实现的最宽可调谐范围,同时也保持了3-dB的窄带宽,这对于6G通信技术的发展具有重要意义。
研究人员还实现了一个集成的光电振荡器,其可调谐频率范围为50GHz,这为集成微谐振器的器件设计和能量控制提供了新的视角,向下一代超高速光电应用迈出了重要一步。
这项工作不仅为量子和非线性光学的物理方面提供了新的视角,而且对于开发6G无线通信技术以提供超宽带操作具有广阔的意义。通过架构优化,可以进一步提高RF应用程序的性能,为sub-6G频段扩展到U频段的一系列应用提供支持,从而进入集成毫米波光子学领域。
总结而言,北京大学电子学院的这项研究不仅在学术上具有创新性,而且在实际应用中具有极高的价值,为未来通信技术的发展提供了强有力的技术支持。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30