超快激光技术突破:一百万条梳线的紫外频率梳开辟光谱学新纪元
在光谱学和精密计时领域,光学频率梳技术一直扮演着革命性的角色。2005年,因其在光学原子钟领域的突出贡献,光学频率梳技术荣获诺贝尔物理学奖。如今,中佛罗里达大学(UCF)光学与光子学学院(CREOL)的研究人员再次推动了这一技术的发展,开发出一种超快激光平台,能够产生具有一百万条梳线的超宽带紫外频率梳,为高分辨率原子和分子光谱学带来了新的可能性。

这项技术的核心在于其前所未有的光谱分辨率。UCFCREOL的Konstantin Vodopyanov教授表示:“尽管光学频率梳技术在可见光至近红外范围内取得了巨大成功,但在紫外波段实现宽带覆盖和高光谱分辨率一直是一项挑战。”然而,他们的团队成功克服了这一难题,开发出了一种高分辨率双梳光谱系统,该系统能够在两个超宽紫外光谱区域产生光,线间距仅为80MHz,解析度高达1000万。
双梳光谱法是一种将两个频率梳结合在一起的新技术,通过在探测器上产生干涉图,再应用傅里叶变换来重建整个光谱。这种方法不仅提供了极高的光谱分辨率,还具备快速的数据采集能力。Vodopyanov教授指出:“宽带高分辨率紫外光谱为原子和分子中的电子跃迁提供了独特的见解,这对于化学分析、光化学、大气痕量气体传感和系外行星探索等应用非常有价值。”
为了实现这一技术,研究人员开发了一个激光平台,能够在2.4微米波长下产生高度相干的超快红外脉冲。通过非线性晶体,他们成功产生了第6和第7谐波,分别覆盖了约1,000,000条和约550,000条光谱分辨的梳状线。这为双梳光谱提供了两个紫外光谱范围,分别为372至410纳米和325至342纳米。
在精度方面,研究人员通过将谱线与原子钟进行比较,确保了高精度的光谱测量能力,适用于最苛刻的应用场景。作为技术演示,他们使用双梳光谱系统测量了IPG/OptiGrate制造的体布拉格光栅镜的窄反射光谱,新系统的分辨率达到了10,000,000,远超现有光栅和傅里叶光谱仪。
展望未来,研究人员计划将这项技术扩展到更深的紫外线区域,可能达到100纳米的波长。这项研究不仅在《Optica》杂志上发表,而且预示着光谱学和精密计时领域将迎来一个新的时代,为科学研究和技术发展开辟了新的方向。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
