超快激光技术突破:一百万条梳线的紫外频率梳开辟光谱学新纪元
在光谱学和精密计时领域,光学频率梳技术一直扮演着革命性的角色。2005年,因其在光学原子钟领域的突出贡献,光学频率梳技术荣获诺贝尔物理学奖。如今,中佛罗里达大学(UCF)光学与光子学学院(CREOL)的研究人员再次推动了这一技术的发展,开发出一种超快激光平台,能够产生具有一百万条梳线的超宽带紫外频率梳,为高分辨率原子和分子光谱学带来了新的可能性。

这项技术的核心在于其前所未有的光谱分辨率。UCFCREOL的Konstantin Vodopyanov教授表示:“尽管光学频率梳技术在可见光至近红外范围内取得了巨大成功,但在紫外波段实现宽带覆盖和高光谱分辨率一直是一项挑战。”然而,他们的团队成功克服了这一难题,开发出了一种高分辨率双梳光谱系统,该系统能够在两个超宽紫外光谱区域产生光,线间距仅为80MHz,解析度高达1000万。
双梳光谱法是一种将两个频率梳结合在一起的新技术,通过在探测器上产生干涉图,再应用傅里叶变换来重建整个光谱。这种方法不仅提供了极高的光谱分辨率,还具备快速的数据采集能力。Vodopyanov教授指出:“宽带高分辨率紫外光谱为原子和分子中的电子跃迁提供了独特的见解,这对于化学分析、光化学、大气痕量气体传感和系外行星探索等应用非常有价值。”
为了实现这一技术,研究人员开发了一个激光平台,能够在2.4微米波长下产生高度相干的超快红外脉冲。通过非线性晶体,他们成功产生了第6和第7谐波,分别覆盖了约1,000,000条和约550,000条光谱分辨的梳状线。这为双梳光谱提供了两个紫外光谱范围,分别为372至410纳米和325至342纳米。
在精度方面,研究人员通过将谱线与原子钟进行比较,确保了高精度的光谱测量能力,适用于最苛刻的应用场景。作为技术演示,他们使用双梳光谱系统测量了IPG/OptiGrate制造的体布拉格光栅镜的窄反射光谱,新系统的分辨率达到了10,000,000,远超现有光栅和傅里叶光谱仪。
展望未来,研究人员计划将这项技术扩展到更深的紫外线区域,可能达到100纳米的波长。这项研究不仅在《Optica》杂志上发表,而且预示着光谱学和精密计时领域将迎来一个新的时代,为科学研究和技术发展开辟了新的方向。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
