激光技术新突破:将塑料垃圾转化为宝贵资源
在全球范围内,塑料污染已成为一个严峻的环境问题。每年有数百万吨塑料垃圾被堆积在垃圾填埋场和海洋中,对生态系统造成严重破坏。为了应对这一挑战,德克萨斯大学奥斯汀分校(UTA)领导的国际研究团队开发了一种创新方法,使用低功率激光在塑料和其他材料中启动碳氢(CH)活化,将塑料垃圾转化为宝贵的资源。

技术原理与创新
该技术的核心在于CH活化过程,即有机分子中的碳氢键被选择性地断裂并转化为新的化学键,分子被分解成最小的部分以便重新使用。研究人员利用这一过程打破塑料分子的化学键并创建新的化学键,这些化学键可以合成发光碳点,有望用于下一代计算机设备的存储器。
为了介导长链分子中的CH活化,该团队使用了2D过渡金属二硫属化物(TMDC)。将分子放置在TMDC材料的顶部并用激光照射,2DTMDCs催化CH活化,实现光学合成和固体基质上发光碳点的图案化。
环境与经济价值
这项技术不仅有助于减少塑料污染,还有可能将塑料转化为对许多不同行业有用的东西。研究员金刚李表示:“将塑料本身可能永远不会分解,但却可以将其转化为对许多不同行业有用的东西,这令人兴奋不已。”发光碳点可用作下一代计算机设备的存储器,这为塑料垃圾的高值化利用提供了新的可能性。
研究进展与挑战
尽管长链有机分子中的CH活化研究很少有报道,但这些复合分子中CH键的衍生对于合成功能性有机复合物和将环境污染物转化为更有价值的化学品具有巨大潜力。研究小组展示的光驱动CH活化过程可应用于许多长链有机化合物,包括聚乙烯和纳米材料系统中常用的表面活性剂。
尽管需要进一步研究以优化光驱动CH活化过程并将其扩大到工业应用,但这项研究是寻求塑料废物管理可持续解决方案的一大进步。研究团队认为,他们采用一种环保的方法,即利用激光和TMDCs将塑料废物拆解并重新组装成有用的材料,这将有助于开发高效的塑料回收技术。
德克萨斯大学奥斯汀分校的郑月兵教授表示:“通过利用这些独特的反应,我们可以探索将环境污染物转化为有价值、可重复使用的化学品的新途径,为发展更可持续的循环经济做出贡献。”这一发现对于应对环境挑战和推动绿色化学领域具有重要意义。除了塑料回收外,复杂有机分子中二维TMDC介导的光驱动CH活化过程还可应用于化学合成和光子材料。光驱动合成发光碳点的潜在应用包括数据加密、信息技术和固态LED技术,为塑料垃圾的再利用开辟了新的道路。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
