激光技术新突破:将塑料垃圾转化为宝贵资源
在全球范围内,塑料污染已成为一个严峻的环境问题。每年有数百万吨塑料垃圾被堆积在垃圾填埋场和海洋中,对生态系统造成严重破坏。为了应对这一挑战,德克萨斯大学奥斯汀分校(UTA)领导的国际研究团队开发了一种创新方法,使用低功率激光在塑料和其他材料中启动碳氢(CH)活化,将塑料垃圾转化为宝贵的资源。

技术原理与创新
该技术的核心在于CH活化过程,即有机分子中的碳氢键被选择性地断裂并转化为新的化学键,分子被分解成最小的部分以便重新使用。研究人员利用这一过程打破塑料分子的化学键并创建新的化学键,这些化学键可以合成发光碳点,有望用于下一代计算机设备的存储器。
为了介导长链分子中的CH活化,该团队使用了2D过渡金属二硫属化物(TMDC)。将分子放置在TMDC材料的顶部并用激光照射,2DTMDCs催化CH活化,实现光学合成和固体基质上发光碳点的图案化。
环境与经济价值
这项技术不仅有助于减少塑料污染,还有可能将塑料转化为对许多不同行业有用的东西。研究员金刚李表示:“将塑料本身可能永远不会分解,但却可以将其转化为对许多不同行业有用的东西,这令人兴奋不已。”发光碳点可用作下一代计算机设备的存储器,这为塑料垃圾的高值化利用提供了新的可能性。
研究进展与挑战
尽管长链有机分子中的CH活化研究很少有报道,但这些复合分子中CH键的衍生对于合成功能性有机复合物和将环境污染物转化为更有价值的化学品具有巨大潜力。研究小组展示的光驱动CH活化过程可应用于许多长链有机化合物,包括聚乙烯和纳米材料系统中常用的表面活性剂。
尽管需要进一步研究以优化光驱动CH活化过程并将其扩大到工业应用,但这项研究是寻求塑料废物管理可持续解决方案的一大进步。研究团队认为,他们采用一种环保的方法,即利用激光和TMDCs将塑料废物拆解并重新组装成有用的材料,这将有助于开发高效的塑料回收技术。
德克萨斯大学奥斯汀分校的郑月兵教授表示:“通过利用这些独特的反应,我们可以探索将环境污染物转化为有价值、可重复使用的化学品的新途径,为发展更可持续的循环经济做出贡献。”这一发现对于应对环境挑战和推动绿色化学领域具有重要意义。除了塑料回收外,复杂有机分子中二维TMDC介导的光驱动CH活化过程还可应用于化学合成和光子材料。光驱动合成发光碳点的潜在应用包括数据加密、信息技术和固态LED技术,为塑料垃圾的再利用开辟了新的道路。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
