基于光学相控阵的光镊:细胞操纵的新纪元
2024年10月21日——一项来自麻省理工学院的突破性研究为生物研究领域带来了革命性的工具:基于光学相控阵(OPA)的光镊。这种集成光镊不仅结构紧凑、成本低廉,而且能够在不损伤细胞的情况下,从安全距离捕获和操纵生物粒子,为生物物理学和疾病研究开辟了新的可能性。

集成光镊的局限与突破
传统的集成光镊在生物研究中的应用受到限制,因为它们提供的操纵间距非常小。麻省理工学院的研究人员通过使用基于硅光子学的OPA,成功地将操纵间距扩大了两个数量级以上,能够在芯片表面上方5毫米处捕获和镊取生物粒子。
OPA光镊的技术优势
OPA光镊结合了集成镊子的优势和体光学系统的多功能性。这种光镊可以从安全距离捕获和操纵生物粒子,同时这些粒子仍留在无菌盖玻片内,确保芯片和粒子都受到保护,免受污染。这一技术的进步使得OPA光镊在未来可以用于研究DNA、对细胞进行分类、研究疾病机制,以及进行之前集成镊子无法完成的实验。
可控势能阱与微尺度粒子的捕获
OPA用于将芯片发射的光聚焦在芯片辐射近场中的特定点,提供可控势能阱,可用于捕获和镊取微尺度粒子。OPA由一系列使用半导体制造工艺在芯片上制造的微尺度天线组成。通过电子控制每个天线发射的光信号,研究人员可以控制OPA来塑造和控制芯片发射的光束。
精确控制与实验应用
麻省理工学院的研究小组发现,通过为每个天线创建特定的相位模式,可以形成一个高度聚焦的光束,适合在距离芯片表面几毫米的地方进行光学捕获和镊取。通过改变为芯片供电的光信号的波长,研究人员可以在大于1毫米的范围内以微尺度精度控制聚焦光束。
研究人员使用OPA光镊捕获芯片表面5毫米处的聚苯乙烯微球,并校准光镊系统。他们通过改变输入激光波长,非机械地控制光束的焦点。此外,该团队还使用光镊展示了小鼠淋巴母细胞的受控变形,这是首次使用单光束集成光镊进行细胞实验。
未来的改进与应用前景
鉴于用于生产OPA镊子的CMOS兼容制造平台的自然可扩展性和设计灵活性,研究人员设想了多种方法来改进系统,以提高其性能并实现新功能。该团队希望改进系统,使光束的焦距可调,并希望将该设备应用于不同的生物系统,并同时使用多个捕获点以更复杂的方式操纵生物粒子。
通过将焦距扩展到毫米级,该团队为集成光镊引入了一种新模式,大大扩展了镊子在生物实验和新兴体内捕获研究中的使用和兼容性。OPA光镊可能有用的有前景的应用范围从DNA和蛋白质实验到细胞操作和分类。
这项研究发表在《自然方法》(NatureMethods)上,标志着基于光学相控阵的光镊技术在生物物理学和疾病研究中的重要进展,为未来的科学研究提供了强大的新工具。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
