【光学前沿】光量子芯片新突破:单光子雪崩二极管阵列与硅光芯片的混合集成
在当今科技飞速发展的时代,光量子芯片作为光量子信息系统规模化发展的关键途径,一直备受关注。近日,一项关于光量子芯片的重要研究成果取得了新进展,清华大学黄翊东、张巍课题组,云南大学团队和北京量子信息科学研究院团队携手合作,成功实现了光通信波段单光子雪崩二极管阵列与硅光芯片的混合高效集成,这一成果意义非凡,还被选为《光学学报(网络版)》创刊号的封面文章,彰显了其在光学领域的重要地位。

一、研究成果亮点纷呈
1.强大的团队协作
此次研究是多团队联合攻关的结晶。云南大学团队在其中发挥了重要作用,他们精心制备出了高质量的SPAD阵列。清华大学团队也毫不逊色,设计并制备出了支持量子干涉功能的硅光芯片,而后通过倒装焊工艺巧妙地实现了两者的混合集成。北京量子院团队则为整个系统提供了高性能电路,确保了电驱动和信号读取的顺利进行。
2.出色的技术指标
在技术性能方面,该集成系统在10℃测试环境下,偏置电压较低时,片上探测效率约为5-6%,暗计数概率在$10^{-5}$cps/gate量级。而当提高偏置电压时,探测效率可进一步提升至10%以上。
通过HOM干涉实验对集成系统的综合性能进行验证,实验得到的HOM干涉条纹可视度约为45%,十分接近理论上限50%,这充分表明了该系统具有良好的性能和稳定性。
二、研究背景与意义
光量子芯片的发展对于推动光量子信息系统的规模化应用至关重要。然而,其中单光子探测功能的集成一直是技术上的难点。以往,超导纳米线单光子探测器(SNSPD)虽然性能优异,但需要低温环境,这在一定程度上限制了其应用范围。而单光子雪崩二极管(SPAD)经过不断发展,在室温下已能展现出不错的性能。因此,实现SPAD阵列与光子芯片的混合集成具有重要的现实意义,它为光量子芯片在更广泛领域的应用提供了可能。
三、封面解析与内涵
《光学学报(网络版)》的创刊号封面生动地展示了SPAD阵列与硅光芯片混合集成的芯片结构和功能。通过倒装焊工艺将两者完美结合,仿佛是在微观世界中搭建了一座精密的桥梁,为光量子信息系统的规模化发展提供了切实可行的解决方案,也预示着光量子技术在未来信息领域的广阔应用前景。
四、技术展望与未来可期
对于该技术的未来发展,研究团队充满信心。后续他们将致力于发展更高质量的探测器芯片,进一步提升探测的灵敏度和准确性;探索更高效的光耦合技术,以提高光信号的传输效率和质量;同时优化性能更优的电路,为整个系统提供更稳定、更强大的支持。随着这些技术的不断发展和完善,该集成系统的探测性能和集成规模有望得到大幅提升,在量子通信和量子传感等前沿领域展现出更大的应用潜力,为推动科技进步和社会发展做出重要贡献。
这项关于光量子芯片的研究成果不仅是科研团队的智慧结晶,更是光量子技术发展的重要里程碑。它为光量子信息系统的未来发展开辟了新的道路,让我们对量子领域的未来充满了期待。相信在不久的将来,我们将见证光量子技术在更多领域的广泛应用,为人类社会带来更多的惊喜和变革。而《光学学报(网络版)》作为学术交流的重要平台,也将继续见证和推动光学领域的创新与发展,为科研成果的传播和交流提供有力支持。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
