太瓦级少周期短波红外涡旋激光器:开创光学新前沿
在光学研究的前沿,太瓦级少周期短波红外涡旋激光器的产生正受到广泛关注。这类激光器不仅作为非线性涡旋现象的驱动源,而且在多个科学领域展现出巨大的应用潜力。最近,由Feng和Qian等人领导的研究团队在短波红外区域取得了突破性进展,成功产生了太瓦级少周期涡旋激光。
一、研究背景
光学涡旋,以其独特的螺旋波前相位,为光学领域带来了新的研究方向。这种结构化光束在方位角方向上具有螺旋相位,能够为每个光子提供轨道角动量,从而在光束中心产生相位奇异性。尽管如此,光学涡旋的放大和压缩阶段的涡旋特性保持一直是一个技术挑战。
二、技术突破
研究人员采用了两级光参量啁啾脉冲放大系统,结合螺旋相位板产生的1.45微米光学涡旋,成功放大至18.6毫焦耳、20赫兹的输出,并实现了拓扑荷为1、2和3的涡旋激光。这一成就标志着高强度少周期涡旋激光的产生进入了一个新的阶段。
三、实验验证
通过精确测量光学涡旋的近远场光斑,研究人员验证了这些光学涡旋在自由空间中传播的高稳定性。此外,实验还证明了产生的高强度飞秒涡旋在光束中心具有一个相对干净的强度节点,这对于涡旋强场物理学的应用至关重要。
四、应用前景
这种高能涡旋脉冲在多个薄板中被光谱展宽,并在时间上被压缩至10.59飞秒,对应于1.08太瓦的峰值功率,同时高度保留了涡旋信息。这一成果不仅为涡旋强场物理学提供了一种有效的工具,而且为高次谐波产生、太赫兹辐射和质子加速等非线性光学现象的驱动提供了新的可能。
这项研究的成功,不仅展示了光参量啁啾脉冲放大技术在产生高强度少周期涡旋激光方面的巨大潜力,而且为未来的光学研究和应用开辟了新的道路。随着技术的不断进步,我们有理由相信,太瓦级少周期短波红外涡旋激光设备将在光学科学和工业应用中扮演越来越重要的角色。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15