太瓦级少周期短波红外涡旋激光器:开创光学新前沿
在光学研究的前沿,太瓦级少周期短波红外涡旋激光器的产生正受到广泛关注。这类激光器不仅作为非线性涡旋现象的驱动源,而且在多个科学领域展现出巨大的应用潜力。最近,由Feng和Qian等人领导的研究团队在短波红外区域取得了突破性进展,成功产生了太瓦级少周期涡旋激光。

一、研究背景
光学涡旋,以其独特的螺旋波前相位,为光学领域带来了新的研究方向。这种结构化光束在方位角方向上具有螺旋相位,能够为每个光子提供轨道角动量,从而在光束中心产生相位奇异性。尽管如此,光学涡旋的放大和压缩阶段的涡旋特性保持一直是一个技术挑战。
二、技术突破
研究人员采用了两级光参量啁啾脉冲放大系统,结合螺旋相位板产生的1.45微米光学涡旋,成功放大至18.6毫焦耳、20赫兹的输出,并实现了拓扑荷为1、2和3的涡旋激光。这一成就标志着高强度少周期涡旋激光的产生进入了一个新的阶段。
三、实验验证
通过精确测量光学涡旋的近远场光斑,研究人员验证了这些光学涡旋在自由空间中传播的高稳定性。此外,实验还证明了产生的高强度飞秒涡旋在光束中心具有一个相对干净的强度节点,这对于涡旋强场物理学的应用至关重要。
四、应用前景
这种高能涡旋脉冲在多个薄板中被光谱展宽,并在时间上被压缩至10.59飞秒,对应于1.08太瓦的峰值功率,同时高度保留了涡旋信息。这一成果不仅为涡旋强场物理学提供了一种有效的工具,而且为高次谐波产生、太赫兹辐射和质子加速等非线性光学现象的驱动提供了新的可能。
这项研究的成功,不仅展示了光参量啁啾脉冲放大技术在产生高强度少周期涡旋激光方面的巨大潜力,而且为未来的光学研究和应用开辟了新的道路。随着技术的不断进步,我们有理由相信,太瓦级少周期短波红外涡旋激光设备将在光学科学和工业应用中扮演越来越重要的角色。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
