太瓦级少周期短波红外涡旋激光器:开创光学新前沿
在光学研究的前沿,太瓦级少周期短波红外涡旋激光器的产生正受到广泛关注。这类激光器不仅作为非线性涡旋现象的驱动源,而且在多个科学领域展现出巨大的应用潜力。最近,由Feng和Qian等人领导的研究团队在短波红外区域取得了突破性进展,成功产生了太瓦级少周期涡旋激光。

一、研究背景
光学涡旋,以其独特的螺旋波前相位,为光学领域带来了新的研究方向。这种结构化光束在方位角方向上具有螺旋相位,能够为每个光子提供轨道角动量,从而在光束中心产生相位奇异性。尽管如此,光学涡旋的放大和压缩阶段的涡旋特性保持一直是一个技术挑战。
二、技术突破
研究人员采用了两级光参量啁啾脉冲放大系统,结合螺旋相位板产生的1.45微米光学涡旋,成功放大至18.6毫焦耳、20赫兹的输出,并实现了拓扑荷为1、2和3的涡旋激光。这一成就标志着高强度少周期涡旋激光的产生进入了一个新的阶段。
三、实验验证
通过精确测量光学涡旋的近远场光斑,研究人员验证了这些光学涡旋在自由空间中传播的高稳定性。此外,实验还证明了产生的高强度飞秒涡旋在光束中心具有一个相对干净的强度节点,这对于涡旋强场物理学的应用至关重要。
四、应用前景
这种高能涡旋脉冲在多个薄板中被光谱展宽,并在时间上被压缩至10.59飞秒,对应于1.08太瓦的峰值功率,同时高度保留了涡旋信息。这一成果不仅为涡旋强场物理学提供了一种有效的工具,而且为高次谐波产生、太赫兹辐射和质子加速等非线性光学现象的驱动提供了新的可能。
这项研究的成功,不仅展示了光参量啁啾脉冲放大技术在产生高强度少周期涡旋激光方面的巨大潜力,而且为未来的光学研究和应用开辟了新的道路。随着技术的不断进步,我们有理由相信,太瓦级少周期短波红外涡旋激光设备将在光学科学和工业应用中扮演越来越重要的角色。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
