精确定位光束焦点:激光散斑技术的应用
在光学系统的设计和分析中,准确确定光束焦点的位置是至关重要的。这不仅影响光学成像的质量,还直接关系到光束应用的有效性,一种创新且精确的方法来定位光束焦点,特别适合于透镜安装在套筒或安装座中且位置不明确的情况。

一、激光散斑技术原理
激光散斑技术基于光束通过散射片后在观察屏上形成的散斑图案。这些散斑由相长干涉和相消干涉产生,其大小直接反映了光束的直径。通过分析散斑的大小变化,我们可以推断出光束焦点的位置。
二、实验步骤详解
实验开始时,首先将一面磨砂一面抛光的散射片组装到光路中。在散射片的抛光面上粘一个卡环,然后拧入SM1T1透镜套筒耦合件,并用SM1RC滑环固定。这种DIY安装方式确保了磨砂面和滑环端面平齐,为后续测量焦点的相对位置提供了便利。
接下来,将散射片放入光路中(磨砂面正对光束),通过导轨使其从透镜的近点开始移动。此时,观察屏上的散斑图案和大小会不断变化。当屏上出现最大的散斑时,表明散射片的磨砂面与透镜焦平面重合,即找到了焦点位置。
为了测量透镜焦点的相对位置,用磨砂面(即滑环前端面)和透镜安装座外螺纹底部作为两个参考面。通过这种方法,可以准确地确定焦点与透镜安装座的相对距离。
三、开普勒扩束器的组装与检验
在定位焦点后,我们可以通过组装开普勒扩束器来进一步验证光束的准直度和扩束效果。使用两个已知焦距的透镜,通过调整透镜间距实现最佳准直度。
扩束器的组装包括使用长套筒、短套筒和一个可调套筒组装成总长212mm的套筒,在两端拧上两个已安装透镜。扩束前后的光束直径分别约为3mm和6mm,验证了扩束效果。
使用剪切干涉仪检查准直度时,通过可调套筒微调两透镜的间距,实现最佳准直度。消色差变焦扩束器的演示表明,这种扩束器可在一定倍率范围内连续改变准直光束的直径,且输出光束一直保持准直。
四、应用与优势
激光散斑技术的应用,为光束焦点的精确定位提供了一种简便、直观且高效的方法。这种方法不仅提高了焦点定位的准确性,还减少了对复杂设备的依赖,使得实验设置更加灵活和经济。
此外,通过这种方法,研究人员和工程师可以快速调整和优化光束系统,从而提高实验效率和设备性能。无论是在科研、生产还是生物医学等领域,激光散斑技术都展现了其巨大的应用潜力。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
