精确定位光束焦点:激光散斑技术的应用
在光学系统的设计和分析中,准确确定光束焦点的位置是至关重要的。这不仅影响光学成像的质量,还直接关系到光束应用的有效性,一种创新且精确的方法来定位光束焦点,特别适合于透镜安装在套筒或安装座中且位置不明确的情况。
一、激光散斑技术原理
激光散斑技术基于光束通过散射片后在观察屏上形成的散斑图案。这些散斑由相长干涉和相消干涉产生,其大小直接反映了光束的直径。通过分析散斑的大小变化,我们可以推断出光束焦点的位置。
二、实验步骤详解
实验开始时,首先将一面磨砂一面抛光的散射片组装到光路中。在散射片的抛光面上粘一个卡环,然后拧入SM1T1透镜套筒耦合件,并用SM1RC滑环固定。这种DIY安装方式确保了磨砂面和滑环端面平齐,为后续测量焦点的相对位置提供了便利。
接下来,将散射片放入光路中(磨砂面正对光束),通过导轨使其从透镜的近点开始移动。此时,观察屏上的散斑图案和大小会不断变化。当屏上出现最大的散斑时,表明散射片的磨砂面与透镜焦平面重合,即找到了焦点位置。
为了测量透镜焦点的相对位置,用磨砂面(即滑环前端面)和透镜安装座外螺纹底部作为两个参考面。通过这种方法,可以准确地确定焦点与透镜安装座的相对距离。
三、开普勒扩束器的组装与检验
在定位焦点后,我们可以通过组装开普勒扩束器来进一步验证光束的准直度和扩束效果。使用两个已知焦距的透镜,通过调整透镜间距实现最佳准直度。
扩束器的组装包括使用长套筒、短套筒和一个可调套筒组装成总长212mm的套筒,在两端拧上两个已安装透镜。扩束前后的光束直径分别约为3mm和6mm,验证了扩束效果。
使用剪切干涉仪检查准直度时,通过可调套筒微调两透镜的间距,实现最佳准直度。消色差变焦扩束器的演示表明,这种扩束器可在一定倍率范围内连续改变准直光束的直径,且输出光束一直保持准直。
四、应用与优势
激光散斑技术的应用,为光束焦点的精确定位提供了一种简便、直观且高效的方法。这种方法不仅提高了焦点定位的准确性,还减少了对复杂设备的依赖,使得实验设置更加灵活和经济。
此外,通过这种方法,研究人员和工程师可以快速调整和优化光束系统,从而提高实验效率和设备性能。无论是在科研、生产还是生物医学等领域,激光散斑技术都展现了其巨大的应用潜力。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15