【光学前沿】光子芯片上的全光频分技术:迈向超低噪声微波源
在现代通信、传感和数据处理等领域,对高性能微波源的需求日益增长。传统的微波源依赖于机械振荡器,其频率范围和稳定性限制了高速应用的性能。为了克服这些限制,研究人员一直在探索新的技术路径。最近,一项突破性的研究成果发表在《Nature》杂志上,介绍了一种在光子芯片上实现全光光频分的技术,这项技术由赵昀等人完成,为微波源的发展带来了新的可能。

一、创新的全光频分技术
这项技术的核心在于使用单个连续波激光器泵浦的克尔微谐振器,通过同步其两个不同的动态状态来实现光频分。这种方法的创新之处在于,它不需要电子锁定,从而简化了设备并减少了能量消耗。通过光参量振荡器的信号场和闲频场之间的太赫兹拍频的固有稳定性传递到克尔孤子梳的微波频率,实现了光频分因子分别为34和468的227GHz和16GHz孤子梳。
二、超低噪声的微波信号
在实验中,研究人员观察到,通过光频分技术,16GHz孤子梳的相位噪声降低了46dB,这是在集成光子平台中观察到的最低微波噪声。这一成果不仅展示了全光频分技术在降低噪声方面的潜力,也为实现与计量实验室生产的最纯频相当的微波频率提供了可能。
三、芯片级设备的前景
这项工作的意义不仅在于实验室内的技术突破,更在于其对芯片级设备发展的推动。通过这种技术,可以开发出更小型、更高效的微波源,这对于通信、传感和数据处理等高速应用领域具有重要意义。研究人员提出的基于低噪声光学参量振荡器和克尔梳的同步,可以设想一种紧凑、超低噪声、宽可调谐的高频微波振荡器的设计,为未来微波源的发展指明了方向。
赵昀等人的这项研究不仅展示了全光频分技术在降低噪声和提高频率稳定性方面的巨大潜力,也为集成光子学领域带来了新的突破。随着技术的进一步发展和应用,我们有望看到更高性能的微波源被广泛应用于各种高科技领域,推动通信和传感技术的进一步发展。这项研究的成功,是光学前沿研究的一个缩影,也是对未来科技的一次有力推动。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
