【光学前沿】光子芯片上的全光频分技术:迈向超低噪声微波源
在现代通信、传感和数据处理等领域,对高性能微波源的需求日益增长。传统的微波源依赖于机械振荡器,其频率范围和稳定性限制了高速应用的性能。为了克服这些限制,研究人员一直在探索新的技术路径。最近,一项突破性的研究成果发表在《Nature》杂志上,介绍了一种在光子芯片上实现全光光频分的技术,这项技术由赵昀等人完成,为微波源的发展带来了新的可能。
一、创新的全光频分技术
这项技术的核心在于使用单个连续波激光器泵浦的克尔微谐振器,通过同步其两个不同的动态状态来实现光频分。这种方法的创新之处在于,它不需要电子锁定,从而简化了设备并减少了能量消耗。通过光参量振荡器的信号场和闲频场之间的太赫兹拍频的固有稳定性传递到克尔孤子梳的微波频率,实现了光频分因子分别为34和468的227GHz和16GHz孤子梳。
二、超低噪声的微波信号
在实验中,研究人员观察到,通过光频分技术,16GHz孤子梳的相位噪声降低了46dB,这是在集成光子平台中观察到的最低微波噪声。这一成果不仅展示了全光频分技术在降低噪声方面的潜力,也为实现与计量实验室生产的最纯频相当的微波频率提供了可能。
三、芯片级设备的前景
这项工作的意义不仅在于实验室内的技术突破,更在于其对芯片级设备发展的推动。通过这种技术,可以开发出更小型、更高效的微波源,这对于通信、传感和数据处理等高速应用领域具有重要意义。研究人员提出的基于低噪声光学参量振荡器和克尔梳的同步,可以设想一种紧凑、超低噪声、宽可调谐的高频微波振荡器的设计,为未来微波源的发展指明了方向。
赵昀等人的这项研究不仅展示了全光频分技术在降低噪声和提高频率稳定性方面的巨大潜力,也为集成光子学领域带来了新的突破。随着技术的进一步发展和应用,我们有望看到更高性能的微波源被广泛应用于各种高科技领域,推动通信和传感技术的进一步发展。这项研究的成功,是光学前沿研究的一个缩影,也是对未来科技的一次有力推动。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15