硅光芯片与光纤耦合的方式、特性与应用
硅光芯片作为一种新型的光电子集成芯片,在现代光通信领域中扮演着至关重要的角色。它是基于硅材料的光子学器件,将光子技术与硅基集成电路技术相结合,具有众多独特的优势。

硅光芯片利用硅材料的优良光学和电学特性,实现了光信号的产生、传输、调制和探测等多种功能。其集成度高,可以将多个光学元件和电子元件集成在同一芯片上,大大减小了器件的体积和功耗。同时,硅材料在半导体工业中具有成熟的制造工艺,这使得硅光芯片的大规模生产成为可能,降低了成本,提高了生产效率。
在硅光芯片与光纤的耦合方面,这是一项关键技术。目前主要有边缘耦合和光栅耦合这两种方式。
边缘耦合在性能方面表现出色。其耦合损耗能低至<2dB,偏振相关性低,并且带宽可超100nm。在晶圆级测试难度虽高但可行,在光纤探针应用方面也有潜力。相比之下,光栅耦合有自身特点,其耦合损耗>3dB,偏振相关性高,带宽<40nm,不过同样可以进行晶圆级测试。
从光芯片带宽来看,光栅耦合器的1-dB带宽在38nm±7nm(晶圆差异),而边缘耦合器的1-dB带宽达到200nm。值得注意的是,硅光芯片并非一定要与光纤连接。例如在一些组合中,激光器、调制器、硅波导、光电二极管以及解调器组合起来,也能构成出色的硅光系统。
这两种耦合方式各有优劣,在不同的应用场景下发挥着独特的作用。随着技术的不断发展,研究人员也在不断探索优化耦合方式,降低损耗、提高带宽等性能指标,以满足日益增长的光通信等领域的需求,硅光芯片相关技术未来有望取得更多突破并创造更大价值。无论是在数据传输速度提升,还是在降低能耗等方面,都有着巨大的潜力等待挖掘。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
