【光学前沿】在硅上集成激光器:imec的四种先进方法
在现代光子学领域,硅光子集成电路(PICs)正变得越来越普遍,它们被用于高速光收发器、激光雷达、光谱仪等众多应用中。尽管硅光子学取得了显著进展,但在集成光发射功能方面一直存在挑战,因为硅本身不是有效的发光材料。为了克服这一难题,研究人员一直在探索将激光器与硅光子学集成的方法。在比利时的纳米电子研发中心imec,研究人员正在追求四种基本策略来实现这种集成:倒装芯片加工、微转移印刷、晶圆键合和单片集成。

倒装芯片加工:精准对准的挑战
倒装芯片加工是一种芯片封装技术,它允许将激光器直接集成到硅晶片上。在这一过程中,边缘发射激光器在晶圆上完全加工并切割成单独的芯片。然后,使用高精度的倒装芯片工艺,单个激光芯片被键合到目标硅光子晶圆上。这一方法需要亚微米级的对准精度,以确保激光器的输出与硅光子芯片的输入对齐。通过使用先进的拾取和放置工具以及机器视觉技术,研究人员已经能够在300毫米硅光子学晶圆上组装激光器件,并实现了高达80%的耦合效率。
微转移印刷:提高制造吞吐量
微转移印刷是一种能够消除对接耦合对准困难并加快装配过程的技术。在这种方法中,III-V族半导体晶圆上的激光器不是被切割成单独的芯片,而是被底切,仅通过小系绳连接到源晶圆上。然后,使用一个类似墨水印章的工具,将激光器与硅光子学晶片上的波导结构对齐并粘合。这种方法使用粘合剂或分子键,依靠范德华力将激光器固定到位。由于具有更大的对齐容差,该技术能够一次传输数千个设备,从而有望实现比倒装芯片处理更高的吞吐量。
晶圆键合:精确对齐的解决方案
晶圆键合技术通过将III-V族半导体的空白晶片粘合到加工过的硅晶片上,解决了精确对齐的问题。然后,在与硅波导对齐的位置上构建所需的激光器件。这种方法支持高吞吐量集成,因为它允许同时并行处理多个设备。晶圆键合使用倏逝耦合,从而产生高效的光学接口。尽管这种方法需要大量投资来建立生产线,但它已经在商业产品中得到应用。
单片集成:直接在硅上生长III-V族半导体
单片集成是将III-V族半导体直接在硅上生长的理想方法,它消除了粘合或对准的需要。然而,这种方法需要克服许多技术障碍,尤其是晶格失配导致的晶体缺陷。为了限制这些缺陷,研究人员开发了一种称为nanoridge工程(NRE)的技术,它通过在硅中特殊形状的沟槽中生长适合激光的半导体,将缺陷捕获在远离激光构建区域的位置。NRE技术仍在实验室中开发,但如果成功,将对行业产生重大影响。
随着这四种方法的进一步发展,预计它们将共存以满足不同的应用需求。倒装芯片加工适合需要少量激光器的应用,而微转移印刷和晶圆键合适合需要大量激光器的批量应用。单片集成代表了激光加工集成的终极水平,但需要在材料质量和晶圆级集成方面取得进一步进展。这些技术的成熟将为硅基激光器的未来发展铺平道路,推动光子学在各个领域的应用。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
