【光学资讯】二氧化钒超表面辐射器件:智能控温技术新突破
在面对全球能源危机和气候变化的挑战下,开发新型高效节能技术变得尤为迫切。其中,辐射制冷技术因其绿色无源被动制冷的特性而备受关注。近期,《Advanced Photonics》杂志2024年第4期发表了一项由北京理工大学李静波和金海波教授团队完成的突破性研究,介绍了一种基于二氧化钒(VO2)超表面的新型辐射制冷器件,该器件能够根据环境温度变化智能调节其辐射特性,为智能温度管理提供了新的可能性。
一、辐射制冷技术的挑战与机遇
辐射制冷技术通过反射太阳辐射并向外太空辐射热量来降低物体温度,是一种极具潜力的节能降温方法。然而,现有的辐射制冷材料多为静态发射率材料,无法根据环境温度变化动态调节发射率,导致在低温环境下可能出现“过制冷”现象,增加供暖系统的能耗。
为了解决这一问题,北京理工大学的研究团队开发了一种发射率动态可调的辐射制冷材料和器件。该团队利用热致变色VO2材料结合非对称法布里-珀罗谐振腔设计的辐射制冷器件,能够根据环境温度变化调节发射率,实现“高温-制冷”和“低温-保暖”的动态热管理效果。
二、二氧化钒超表面辐射器件的创新设计
研究团队采用VO2超表面策略,设计并制备了一种温度自适应的超表面辐射制冷器件(ATMRD)。与传统的ATRD相比,ATMRD的太阳吸收率降低了7.54%,而高温发射率提高了13.3%。这一成果不仅提升了发射率性能,还显著降低了太阳吸收率,解决了低太阳能吸收率与高热红外发射率之间的矛盾。
ATMRD器件由三层结构组成:底部为高反射金属层,中间为红外高透过介质层,顶部为红外透过率可调的VO2层。通过精确的模拟和优化,研究者确定了最佳的结构参数,并采用磁控溅射技术成功制备了ATMRD器件。实验结果表明,ATMRD器件在高温下的发射率显著提高,而太阳吸收率降低,展现出优异的动态辐射热管理能力。
三、应用前景与未来展望
这项研究的成功不仅证明了VO2超结构在协同优化热红外发射率和太阳吸收率方面的潜力,还为VO2超结构功能器件的设计和开发提供了宝贵的理论基础和实践参考。ATMRD器件的实际应用潜力评估显示,该器件在低温环境下表现出优异的保温性能,在高温环境下则具备良好的散热效果,且发射率对探测角度的依赖性较弱,证明了其在不同应用场景中的稳定性能。
随着智能控温技术的不断发展,基于VO2超表面的辐射制冷器件有望在未来的建筑节能、汽车热管理等领域发挥重要作用,为实现绿色节能和智能温度控制提供强有力的技术支持。这一突破性研究不仅推动了辐射制冷技术的发展,也为应对全球能源危机和气候变化提供了新的解决方案。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30