【光学资讯】二氧化钒超表面辐射器件:智能控温技术新突破
在面对全球能源危机和气候变化的挑战下,开发新型高效节能技术变得尤为迫切。其中,辐射制冷技术因其绿色无源被动制冷的特性而备受关注。近期,《Advanced Photonics》杂志2024年第4期发表了一项由北京理工大学李静波和金海波教授团队完成的突破性研究,介绍了一种基于二氧化钒(VO2)超表面的新型辐射制冷器件,该器件能够根据环境温度变化智能调节其辐射特性,为智能温度管理提供了新的可能性。
一、辐射制冷技术的挑战与机遇
辐射制冷技术通过反射太阳辐射并向外太空辐射热量来降低物体温度,是一种极具潜力的节能降温方法。然而,现有的辐射制冷材料多为静态发射率材料,无法根据环境温度变化动态调节发射率,导致在低温环境下可能出现“过制冷”现象,增加供暖系统的能耗。
为了解决这一问题,北京理工大学的研究团队开发了一种发射率动态可调的辐射制冷材料和器件。该团队利用热致变色VO2材料结合非对称法布里-珀罗谐振腔设计的辐射制冷器件,能够根据环境温度变化调节发射率,实现“高温-制冷”和“低温-保暖”的动态热管理效果。
二、二氧化钒超表面辐射器件的创新设计
研究团队采用VO2超表面策略,设计并制备了一种温度自适应的超表面辐射制冷器件(ATMRD)。与传统的ATRD相比,ATMRD的太阳吸收率降低了7.54%,而高温发射率提高了13.3%。这一成果不仅提升了发射率性能,还显著降低了太阳吸收率,解决了低太阳能吸收率与高热红外发射率之间的矛盾。
ATMRD器件由三层结构组成:底部为高反射金属层,中间为红外高透过介质层,顶部为红外透过率可调的VO2层。通过精确的模拟和优化,研究者确定了最佳的结构参数,并采用磁控溅射技术成功制备了ATMRD器件。实验结果表明,ATMRD器件在高温下的发射率显著提高,而太阳吸收率降低,展现出优异的动态辐射热管理能力。
三、应用前景与未来展望
这项研究的成功不仅证明了VO2超结构在协同优化热红外发射率和太阳吸收率方面的潜力,还为VO2超结构功能器件的设计和开发提供了宝贵的理论基础和实践参考。ATMRD器件的实际应用潜力评估显示,该器件在低温环境下表现出优异的保温性能,在高温环境下则具备良好的散热效果,且发射率对探测角度的依赖性较弱,证明了其在不同应用场景中的稳定性能。
随着智能控温技术的不断发展,基于VO2超表面的辐射制冷器件有望在未来的建筑节能、汽车热管理等领域发挥重要作用,为实现绿色节能和智能温度控制提供强有力的技术支持。这一突破性研究不仅推动了辐射制冷技术的发展,也为应对全球能源危机和气候变化提供了新的解决方案。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15