【光学前沿】超临界光子束缚态取得新突破
在光学领域,光子束缚态的研究一直是一个热点话题。这些状态能够在自由空间波谱中形成拓扑上非平凡的暗模,为光子学带来了重要的进展。然而,实现最大的近场增强一直是一个挑战,因为它需要精确匹配辐射和非辐射损失。最近,一项发表在《Nature》杂志上的新研究为我们提供了一种新的方法——超临界耦合,这一概念源自于弗里德里希·温特根条件附近的近场耦合共振中的电磁诱导透明。
一、超临界耦合:突破传统限制
超临界耦合发生在暗模式和亮模式之间的近场耦合补偿了与暗模式的可忽略的直接远场耦合时。这种耦合使得连续体场中的准束缚态能够达到非辐射损耗所施加的最大增强,即使在辐射品质因子发散的情况下也是如此。这一发现为光子学领域带来了革命性的进展,因为它允许在辐射损耗发散的情况下实现光场的巨大增强。
二、实验验证:上转换光致发光的巨大增强
研究人员通过在定制的纳米结构与周围的未图案化板相遇的边缘点达到超临界耦合,实验证明了上转换光致发光的巨大增强。这种增强超过了单个暗谐振器耦合的数量级,上转换光子在平面内传播,形成空间宽度小于100微米、在厘米距离内发散度小于0.07°的微尺度相干光束。这一成果不仅展示了超临界耦合的潜力,也为未来的光源开发、能量收集和光化学催化等领域的应用提供了新的可能性。
三、理论模型与实验实现
研究人员设计了一个透明的多孔光子晶体纳米板,上面覆盖着一层共形的上转换纳米粒子层。该系统由非厄米哈密顿量描述,模拟了横向电类和横向磁类模式耦合到单个独立辐射通道。通过精确的实验设计和控制,研究人员成功地在实验中观察到了超临界耦合现象,并实现了显著的上转换光致发光增强。
四、自准直仪和辐射增强:未来的应用前景
超临界耦合不仅提高了光场的强度,还使得上转换光子在平面内传播时形成了具有高度方向性和空间相干性的微尺度相干光束。这种自准直特性,结合了超临界耦合的高场增强,为光学系统的设计提供了新的思路。通过精确控制输入光束的聚焦和偏振,可以实现对发射光束方向性的精确控制,这对于开发新型光源和传感器具有重要意义。
超临界束缚态的发现和实验验证为光学领域带来了新的突破。这种新型的光子束缚态不仅在理论上具有创新性,而且在实际应用中展现出巨大的潜力。随着进一步的研究和开发,我们有理由相信,超临界耦合将为光学技术的进步开辟新的道路,为未来的科技发展带来革命性的变化。
-
突破催化依赖!中山大学团队PNAS新成果:激光常温常压下实现全水分解,同步制备氢气与过氧化氢
在全球“双碳”目标推进及绿色生产需求升级的背景下,清洁氢能开发与过氧化氢环保制备已成为能源化工领域的核心议题。传统制备技术普遍面临催化剂依赖、高能耗及污染排放等瓶颈,严重制约行业可持续发展。近日,中山大学闫波教授团队在《美国国家科学院院刊》(PNAS)发表的研究成果,为破解这一困局提供了革命性方案:无需任何催化剂,仅通过脉冲激光即可在常温常压条件下直接实现全水分解,同步生成氢气与过氧化氢,且光氢能量转换效率达2.1%,为绿色能源与化工产业开辟了全新技术路径。
2025-10-13
-
哥伦比亚大学研发芯片级高功率频率梳,助力数据中心光源升级
纽约,2025年10月8日—哥伦比亚大学工程与应用科学学院的研究团队研发出一种新技术,无需依赖体积庞大且成本高昂的激光器与放大器,即可构建高功率频率梳。该团队的研究成果实现了频率梳功率向芯片的集成,进而为紧凑式、高功率、多波长光源的开发提供了可能。研究人员认为,所研发的技术方法与系统可应用于先进数据中心——此类数据中心虽已采用光纤链路传输数据,但当前仍普遍依赖单波长激光器。
2025-10-11
-
飞秒光脉冲的3D可视化:用代码“看见”看不见的光
飞秒光脉冲是一种特殊的激光信号,它的体积极小(仅几微米×几微米×几十微米),却蕴含万亿瓦量级的峰值功率——由于尺度远超出肉眼可见范围,我们无法直接用眼睛观察它。但借助不到100行的MATLAB代码,就能将这种抽象的电磁波转化为可旋转、可“飞行”的3D“光子云”(俗称“光蒲公英”)。更重要的是,这一可视化结果严格遵循麦克斯韦方程,兼具科学性与直观性。
2025-10-11
-
光模块产业“卡脖子”问题剖析,从核心芯片到全产业链的突围路径
AI集群的数据流转需求突破每秒TB级,全球数据中心带宽需求呈现每两年翻倍的增长态势,光模块作为承载光信号传输的核心器件,已成为支撑数字经济发展的关键基础设施。据行业统计数据,中国企业在全球光模块市场的份额已超过60%,在下游封装与系统集成领域形成显著竞争优势。然而,深入剖析产业结构可见,我国光模块产业呈现“倒金字塔”式发展格局——真正制约产业高质量发展、形成“卡脖子”风险的环节,并非下游组装领域,而是光模块的核心组件“激光器芯片”,以及支撑芯片制造的上游材料与设备体系。
2025-10-11