【光学前沿】突破性进展:基于Nd:YLF双晶体结构的纳秒脉冲深红拉曼激光器
在科学探索和技术革新的前沿,激光技术以其卓越的性能和广泛的应用前景,一直是研究的热点。最近,一项由暨南大学物理与光电工程学院的陈振强教授和代世波副教授领导的团队,成功开发了一种基于Nd:YLF双晶体结构的纳秒脉冲深红拉曼激光器,该激光器在多个领域具有潜在的重要应用。
一、深红激光器的重要性
深红色激光源,其波长范围在660-760nm,因其在光合作用、光动力疗法、皮肤科以及紫外激光生成等领域的广泛应用而备受青睐。此外,纳秒脉冲深红辐射源为光声成像、受激发射损耗显微镜、雷达探测和光学泵浦碱金属蒸汽激光器等高端应用提供了新的能力。
二、技术突破
该研究团队通过在极界相匹配的三硼酸锂晶体中,利用主动调Q的Nd:YLF双激光晶体基KGW拉曼激光器的腔内二次谐波产生,实现了一种高功率可调谐、可扩展的纳秒脉冲深红激光器。通过精细调节三硼酸锂晶体的相位匹配角并仔细重新调整谐振腔,将1461nm和1490nm的第一斯托克斯场转换为731nm和745nm的深红色发射线。
三、性能参数
在83W泵浦功率和最佳脉冲重复频率4kHz下,该深红色激光系统实现了最大平均输出功率5.2W和7.6W,对应的光电转换效率接近6.3%和9.2%。此外,获得了6.7ns和5.5ns的脉冲宽度和高达190kW和350kW的峰值功率,光束质量接近衍射极限,M²≈1.5。
四、实验装置
实验装置包括一个波长锁定的窄带光纤耦合激光二极管作为泵浦源,以及一系列精心设计的光学元件,包括聚焦透镜、偏振分束器、半波片和声光调制器。通过调整KGW晶体的相位匹配角,可以获得不同的拉曼位移,从而产生所需的深红色激光。
五、应用前景
这项研究的成功,不仅在技术上实现了重大突破,而且在工业应用中具有广泛的应用前景。这种新型的深红激光器,以其高功率、高效率和优异的光束质量,有望成为调Q的翠绿宝石激光器的有力替代品,特别是在测高和植被监测等领域。
暨南大学的研究团队通过创新的设计和精心的实验,成功开发了一种新型的纳秒脉冲深红拉曼激光器。这项工作不仅展示了深红激光器在多个领域的应用潜力,也为未来的激光加工技术研究提供了新的方向。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30