光学领域新突破:全新全混合集成铒基激光器
在现代光学领域,激光器技术的发展日新月异,不断推动着科学研究和工业应用的边界。最近,一项由瑞士洛桑联邦理工学院物理研究所的Yang Liu博士后和Tobias Kippenberg教授领导的团队所取得的突破,为集成光子学领域带来了新的曙光。他们成功研发了一种全混合集成铒基激光器,这种激光器不仅实现了高输出功率和低噪声,还具备了卓越的波长可调性。

一、技术亮点
1.窄线宽与高输出功率:该激光器实现了50Hz的窄线宽和17mW的高输出功率,这在集成激光器领域是一个显著的成就。窄线宽对于提高信号的质量和精确度至关重要,而高输出功率则确保了激光器在各种应用中的可靠性和效率。
2.集成III-V泵浦激光器:通过与III-V泵浦激光器的集成,该激光器的性能接近了传统的光纤激光器和最先进的半导体扩展腔激光器。这种集成方法不仅提高了激光器的整体性能,也展示了将不同技术优势结合在一起的潜力。
3.超低损耗氮化硅光子集成电路:激光器使用的氮化硅光子集成电路具有米级长的铒离子注入的超低损耗波导,提供了超过30dB的净增益。这种设计不仅提高了激光器的效率,还扩大了其在不同波长范围内的可调性。
4.波长可调性:该激光器展示了在光学C和L波段内超过40nm的波长可调性,这对于需要宽波长范围的应用来说是一个巨大的优势。
5.电信频带内无双光子吸收:氮化硅光子集成电路在电信频带内没有双光子吸收,这意味着激光器可以在不影响信号质量的情况下在这些频带内工作。
6.高功率处理与低温度灵敏度:激光器能够处理高达数十瓦的高功率,同时具有低于硅的温度灵敏度,这使得它在极端环境下也能保持稳定。
二、应用前景
这种新型激光器的出现,为多个领域带来了新的应用可能性:
1.激光雷达:在自动驾驶汽车和机器人导航中,窄线宽和高输出功率的激光雷达可以提供更精确的距离和速度测量。
2.微波光子学:在微波信号处理和传输中,这种激光器可以提供更高质量的光信号。
3.光频合成:在光学频率合成中,波长可调性为精确控制光频率提供了新的手段。
4.光纤通信:在光纤通信领域,这种激光器的低噪声特性和高输出功率可以提高信号的传输质量和距离。
这项研究不仅展示了集成光子学领域的最新进展,也为未来的光学技术发展指明了方向。随着技术的不断进步,我们可以期待这种全混合集成铒基激光器将在更多领域发挥重要作用。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
