光学领域新突破:全新全混合集成铒基激光器
在现代光学领域,激光器技术的发展日新月异,不断推动着科学研究和工业应用的边界。最近,一项由瑞士洛桑联邦理工学院物理研究所的Yang Liu博士后和Tobias Kippenberg教授领导的团队所取得的突破,为集成光子学领域带来了新的曙光。他们成功研发了一种全混合集成铒基激光器,这种激光器不仅实现了高输出功率和低噪声,还具备了卓越的波长可调性。
一、技术亮点
1.窄线宽与高输出功率:该激光器实现了50Hz的窄线宽和17mW的高输出功率,这在集成激光器领域是一个显著的成就。窄线宽对于提高信号的质量和精确度至关重要,而高输出功率则确保了激光器在各种应用中的可靠性和效率。
2.集成III-V泵浦激光器:通过与III-V泵浦激光器的集成,该激光器的性能接近了传统的光纤激光器和最先进的半导体扩展腔激光器。这种集成方法不仅提高了激光器的整体性能,也展示了将不同技术优势结合在一起的潜力。
3.超低损耗氮化硅光子集成电路:激光器使用的氮化硅光子集成电路具有米级长的铒离子注入的超低损耗波导,提供了超过30dB的净增益。这种设计不仅提高了激光器的效率,还扩大了其在不同波长范围内的可调性。
4.波长可调性:该激光器展示了在光学C和L波段内超过40nm的波长可调性,这对于需要宽波长范围的应用来说是一个巨大的优势。
5.电信频带内无双光子吸收:氮化硅光子集成电路在电信频带内没有双光子吸收,这意味着激光器可以在不影响信号质量的情况下在这些频带内工作。
6.高功率处理与低温度灵敏度:激光器能够处理高达数十瓦的高功率,同时具有低于硅的温度灵敏度,这使得它在极端环境下也能保持稳定。
二、应用前景
这种新型激光器的出现,为多个领域带来了新的应用可能性:
1.激光雷达:在自动驾驶汽车和机器人导航中,窄线宽和高输出功率的激光雷达可以提供更精确的距离和速度测量。
2.微波光子学:在微波信号处理和传输中,这种激光器可以提供更高质量的光信号。
3.光频合成:在光学频率合成中,波长可调性为精确控制光频率提供了新的手段。
4.光纤通信:在光纤通信领域,这种激光器的低噪声特性和高输出功率可以提高信号的传输质量和距离。
这项研究不仅展示了集成光子学领域的最新进展,也为未来的光学技术发展指明了方向。随着技术的不断进步,我们可以期待这种全混合集成铒基激光器将在更多领域发挥重要作用。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30