水下成像广角镜头:能否突破水下成像的困境?
在水下世界,我们如何才能清晰地看到其中的景象呢?水下成像技术就是我们的“眼睛”,它让我们能够探索和了解这个充满未知的领域。然而,水下成像并不是一件容易的事情,它面临着许多挑战。

水下成像是通过专门的技术捕捉和呈现水下环境中物体的视觉表现的过程,它对于人类探索、利用和保护海洋具有重要意义。水下成像技术的应用范围非常广泛,包括海洋资源勘探、水下考古、生物研究、水下工程安装和维护、环境监测、救援行动和打捞等。
但是,水下成像离不开成像物镜,而水下成像镜头通常为广角物镜,这就带来了一些问题。常规广角物镜的设计是以空气为入射介质,当水下成像设备工作时,水下目标成像光经过水—窗口—空气进入物镜,在这个过程中会产生折射和散射,从而给成像系统带来各种像差,影响成像质量。
就像普通的工业广角镜头,在空气中图像质量良好,但当入射介质为水并添加平面玻璃窗口时,图像质量就会受到严重影响。例如,会出现畸变的问题,图像的边缘会出现明显的畸变,这会妨碍对所观察物体形状的准确表示,特别是在测量应用中。此外,还会出现色差的问题,由于水和空气对不同波长的光的折射率不同,传统镜头直接用于水下成像会产生严重的色差。在平面窗口和水间的界面还会引入额外的像差,如球差、彗差,这些像差在视场边缘最严重。
为了解决这些问题,达到最佳的成像质量,我们需要采取一些措施。常用的方法是在主透镜前面增加一个透镜组,这种校正透镜组类似于一种改进的望远镜设计,具有非常短的焦距。通过引入其自身受控的像差,它有效地抵消了介质变化引起的像差。此外,通过使用消色差双合透镜,同时校正色差。
基于原始广角镜头设计,修改入射介质为水,并增加一个由负前元件和正后元件组成的透镜组。优化设计结果表明,介质变化引起的畸变和色差被消除,而其他像差基本上恢复到原始设计水平。这种修正后的镜头非常适合水下摄影应用。
水下成像广角镜头的出现是一个重大的技术进步,它能够提升水下成像镜头的成像质量,让我们能够更清晰地看到水下世界的景象。但是,它是否能够完全突破水下成像的困境,还需要不断地进行探索和研究。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
