什么是光量测定法?光量测定法的原理、发展与应用
从定义来看,光量测定法是将照射在生物体或其他物体的光量,作为表面入射光量进行测定的方法。其主要采用热电偶、光电管和化学等测定方法,在实用中也可利用失活病毒(细菌噬菌体)等生物学的测定方法。单位通常是以放射束密度jm²/sec,光束密度im/m²等表示。
光量测定法有着颇为悠久的历史演变。1825年,JohnHerschel引入了actinometer这一术语,当时光的光子性质尚未被发现,该仪器主要用于测量太阳光的热能,而非光子通量。后来,化学光量计得以发明,通过光诱导光化学反应,然后记录化学转化物质的量,比如使用含有硫酸铀酰的草酸液体溶液,草酸分解为二氧化碳、一氧化碳和水,之后通过用高锰酸钾滴定来测量分解的草酸量。随着科学的发展,在某个时候,Actinometry的原始定义被修改为现代意义,即指的是辐射量子。
在现代技术中,若光电探测器(如光电二极管)在相关光谱区域的量子效率大致恒定,也可用于光量测量。对于高能辐射(伽马射线、阿尔法辐射等)的测量,可以使用带有光电探测器的云室来测量记录的粒子事件的速率,对于某些类型的辐射,简单的盖革计数器也可达到目的。
光量测定法在多个领域发挥着关键作用。在医学领域,例如在某些疾病的诊断和治疗中,准确测定光量对于确保治疗的有效性和安全性至关重要;在环境科学中,可用于测量太阳辐射等,帮助研究人员了解环境中的光能量分布及其对生态系统的影响;在材料科学研究中,能够评估材料对光的吸收、反射等特性,为新材料的研发提供数据支持。
光量测定法作为一种重要的测量手段,历经历史的变迁和技术的发展,不断拓展着其应用范围,为各领域的科学研究和实际应用提供支持。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30