什么是光量测定法?光量测定法的原理、发展与应用
从定义来看,光量测定法是将照射在生物体或其他物体的光量,作为表面入射光量进行测定的方法。其主要采用热电偶、光电管和化学等测定方法,在实用中也可利用失活病毒(细菌噬菌体)等生物学的测定方法。单位通常是以放射束密度jm²/sec,光束密度im/m²等表示。

光量测定法有着颇为悠久的历史演变。1825年,JohnHerschel引入了actinometer这一术语,当时光的光子性质尚未被发现,该仪器主要用于测量太阳光的热能,而非光子通量。后来,化学光量计得以发明,通过光诱导光化学反应,然后记录化学转化物质的量,比如使用含有硫酸铀酰的草酸液体溶液,草酸分解为二氧化碳、一氧化碳和水,之后通过用高锰酸钾滴定来测量分解的草酸量。随着科学的发展,在某个时候,Actinometry的原始定义被修改为现代意义,即指的是辐射量子。
在现代技术中,若光电探测器(如光电二极管)在相关光谱区域的量子效率大致恒定,也可用于光量测量。对于高能辐射(伽马射线、阿尔法辐射等)的测量,可以使用带有光电探测器的云室来测量记录的粒子事件的速率,对于某些类型的辐射,简单的盖革计数器也可达到目的。
光量测定法在多个领域发挥着关键作用。在医学领域,例如在某些疾病的诊断和治疗中,准确测定光量对于确保治疗的有效性和安全性至关重要;在环境科学中,可用于测量太阳辐射等,帮助研究人员了解环境中的光能量分布及其对生态系统的影响;在材料科学研究中,能够评估材料对光的吸收、反射等特性,为新材料的研发提供数据支持。
光量测定法作为一种重要的测量手段,历经历史的变迁和技术的发展,不断拓展着其应用范围,为各领域的科学研究和实际应用提供支持。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
