【光学前沿】3.1µm线性腔高功率空心光纤气体激光器取得突破与创新
在激光技术的不断演进中,中红外空心光纤气体激光器基于气体分子粒子数反转机制近年来取得了显著发展。而如今,一项令人瞩目的研究成果为这一领域带来了新的突破。

一、研究成果
1.连续波激光器
研究团队成功实现了3.1µm高功率连续波激光器。在3mbar乙炔气压力和26W有效泵浦功率下,输出功率达8.23W,斜率效率为31.8%。其光束质量优异,Mₓ²=1.18和Mᵧ²=1.15。与此前指标相比,功率高出三个数量级以上,斜率效率提高四倍,这无疑是一项重大的飞跃。
2.自调Q脉冲激光器
在50毫巴乙炔气压和11.7瓦有效泵浦功率下,实现了输出功率为1.98瓦的自调Q脉冲。脉冲重复率为4.59兆赫,脉冲宽度为45纳秒,峰值功率为9.58瓦。
二、深入的研究背景
大多中红外空心光纤气体激光器采用单程无腔结构,在此基础上,本次研究人员创新性地使用线性腔空心光纤气体激光器进行深入探索。
三、精密的实验装置
1.泵浦源
采用自制的30W单频光纤激光器,波长为1.535µm,最大输出功率为32W。中心波长可在1534.71-1535.44nm之间调节,调谐精度高达1pm,测量的线宽小于100MHz。
2.气室
选用芯径为120µm的8管嵌套空心反谐振光纤,两端密封在气室内。0°空心光纤端面压在输入和输出窗口上,输入和输出窗口分别涂有二向色镜和未涂层的氟化钙窗口。
3.其他
输出端放置中红外带通滤光片,乙炔气体以相反方向引入以减轻热效应。
四、独特的工作原理
1.能级跃迁
当乙炔分子P(17)吸收线被激发时,可从基态旋转态到振动态旋转态,生成两条中红外激光发射线。分别指ν₁+ν₃的J=16旋转状态到ν₁的J=15和J=17旋转状态。P(17)发射线强度随气压增加而增强,R(15)线强度降低,在50毫巴气压下R(15)线被完全抑制。
2.压力影响
嵌套空心反谐振光纤内最佳气体压力为3mbar。低于此压力,气体分子无法吸收足够泵浦激光提供足够增益;气压增加会提高泵浦激光吸收率,但过高气压会使激光功率降低。
3.腔振荡验证
3.1µm连续波激光器频谱呈现周期性趋势,间隔对应空心光纤腔纵向模式间距,表明有典型腔振荡特征,且相对强度噪音受泵浦功率影响。
4.自调Q脉冲产生原因
自调Q脉冲的产生来自气体的受激布里渊散射效应,其谐波频率有限归因于气体介质的有限增益带宽。
-
平行光管如何精准测量光学系统的五大核心指标
在智能手机成像、卫星遥感探测、自动驾驶环境感知等各类依赖光学技术的场景中,平行光管作为关键检测设备,以模拟无限远目标的核心功能,为光学系统性能量化提供标准化基准。从工业量产的质检流程到尖端科研的校准实验,其在保障光学设备精度与可靠性方面发挥着不可替代的作用,是光学工程领域不可或缺的“精准标尺”。
2025-12-08
-
【光学材料】单晶衍射呈离散斑点、多晶衍射呈同心圆环的机理研究
在材料科学的结构表征领域,透射电子显微镜(TEM)选区电子衍射(SAED)技术是解析晶体材料微观结构的核心手段之一。相同测试条件下,单晶材料的衍射图案表现为离散分布的明亮斑点,而多晶材料则呈现规整的同心圆环,这一现象是晶体内部微观结构特征的直接映射。本文将从衍射基本原理、晶粒取向差异、信号形成机制及特殊情况延伸等维度,系统阐释这一现象的本质规律。
2025-12-08
-
OptiSurf®镜面定位仪如何成为高精度光学测量新标杆?其技术优势与应用价值何在?
测量精度直接决定了光学设备的性能上限。由德国全欧光学TRIOPTICS设计的OptiSurf®镜面定位仪,凭借其非接触式测量技术与卓越的精度表现,成为解决光学元件中心厚度及空气间隔测量难题的理想工具,为光学行业的高精度生产与研发提供了可靠支撑。
2025-12-08
-
热红外检测核心技术解析:热释电与热电堆的原理及应用差异
在红外热探测、气体分析、激光功率监测等现代工业与科研领域,热-电转换技术是实现非接触式温度感知与能量检测的核心。其中,热释电效应与热电堆传感器作为两大主流热红外检测机制,凭借各自独特的物理特性,支撑着不同场景下的精准测量需求。本文将从原理本质、核心特性、应用场景等维度,深入解析两者的技术差异与选型逻辑。
2025-12-08
