硅基波导集成光学相控阵芯片:开启激光雷达新纪元
在当今科技飞速发展的时代,硅基光电子集成技术正展现出巨大的潜力。《光学学报》“信息光子器件与集成”专题中,硅基波导集成光学相控阵芯片成为了焦点。

一、专题背景
此专题围绕多个重要研究方向,精心出版了32篇特邀文章。其中,硅基波导集成光学相控阵芯片作为集成化固态激光雷达的关键扫描部件,备受瞩目。它的出现,为激光雷达的发展带来了新的机遇。
二、芯片介绍
1.工作原理
硅基波导集成光学相控阵芯片按照相控阵架构布局集成光学单元器件。通过巧妙地改变子通道的幅度和相位分布,能够轻松实现波束指向的切换,就如同一位精准的指挥家,掌控着光束的方向。
2.优势显著
与传统的光学扫描器件相比,该芯片有着诸多优势。它不含透镜和运动部件,这使得它能够任意捷变地切换波束指向,实现自适应扫描格式。这种特性对于激光雷达的轻量化和智能化应用至关重要,为未来的科技发展奠定了坚实的基础。
3.挑战与突破
波长扫描新策略:通过牺牲波前调控自由度,将阵元无源化并引入波长相关的色散元件,不仅提高了集成密度,还降低了控制复杂度,为芯片的性能提升开辟了新途径。
片上光放大创新:异质集成III/V族增益实现分布式片上光放大,将规模劣势成功转变为优势,大幅提高了主波束功率和测程,让激光雷达的探测能力更上一层楼。
硅-氮化硅多层集成:这种集成方法实现了两种材料的优势互补,巧妙地移除了芯片功率瓶颈,同时有效避免了热效应和热串扰,确保了芯片的稳定运行。
消除指向混淆:采用稀疏阵列设计或游标收发阵列设计,成功消除了波束成形或收发探测过程中的指向混淆,提高了激光雷达的准确性和可靠性。
三、总结与展望
经过科研人员多年的不懈努力,硅基波导集成光学相控阵芯片已逐步向实现自动驾驶激光雷达指标收敛。欧光科技相信在不久的将来,该技术有望落地量产,为相关产业带来翻天覆地的变化,开启激光雷达的新纪元。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
