硅基波导集成光学相控阵芯片:开启激光雷达新纪元
在当今科技飞速发展的时代,硅基光电子集成技术正展现出巨大的潜力。《光学学报》“信息光子器件与集成”专题中,硅基波导集成光学相控阵芯片成为了焦点。
一、专题背景
此专题围绕多个重要研究方向,精心出版了32篇特邀文章。其中,硅基波导集成光学相控阵芯片作为集成化固态激光雷达的关键扫描部件,备受瞩目。它的出现,为激光雷达的发展带来了新的机遇。
二、芯片介绍
1.工作原理
硅基波导集成光学相控阵芯片按照相控阵架构布局集成光学单元器件。通过巧妙地改变子通道的幅度和相位分布,能够轻松实现波束指向的切换,就如同一位精准的指挥家,掌控着光束的方向。
2.优势显著
与传统的光学扫描器件相比,该芯片有着诸多优势。它不含透镜和运动部件,这使得它能够任意捷变地切换波束指向,实现自适应扫描格式。这种特性对于激光雷达的轻量化和智能化应用至关重要,为未来的科技发展奠定了坚实的基础。
3.挑战与突破
波长扫描新策略:通过牺牲波前调控自由度,将阵元无源化并引入波长相关的色散元件,不仅提高了集成密度,还降低了控制复杂度,为芯片的性能提升开辟了新途径。
片上光放大创新:异质集成III/V族增益实现分布式片上光放大,将规模劣势成功转变为优势,大幅提高了主波束功率和测程,让激光雷达的探测能力更上一层楼。
硅-氮化硅多层集成:这种集成方法实现了两种材料的优势互补,巧妙地移除了芯片功率瓶颈,同时有效避免了热效应和热串扰,确保了芯片的稳定运行。
消除指向混淆:采用稀疏阵列设计或游标收发阵列设计,成功消除了波束成形或收发探测过程中的指向混淆,提高了激光雷达的准确性和可靠性。
三、总结与展望
经过科研人员多年的不懈努力,硅基波导集成光学相控阵芯片已逐步向实现自动驾驶激光雷达指标收敛。欧光科技相信在不久的将来,该技术有望落地量产,为相关产业带来翻天覆地的变化,开启激光雷达的新纪元。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30