光子芯片上的集成涡旋孤子微梳:实现光频率与轨道角动量组合控制
研究背景:光的频率和轨道角动量的协同控制为时空光波形的产生和光学计量提供新机会,但物理实现存在挑战,微光子技术可在较小占地面积上创建和检测轨道角动量光束,光学微谐振器是新兴的涡旋发射平台。
原理:连续波泵浦激光进入微谐振器产生孤子微梳,内周刻有角光栅使微梳发射到自由空间,携带不同轨道角动量,体现频率和轨道角动量的双射关系。
器件:用4μm硅基底和800nm厚氮化硅薄膜制造微谐振器,平均半径和宽度分别为22μm和2μm,自由光谱范围约1THz,光栅元件设计为椭圆形,垂直发射效率7%,模式系列色散显示反常群速度色散,固有品质因数为179万,倍频分裂接近设计值,装置抑制了不希望的后向散射。
光谱特性:微谐振器被放大的连续波激光泵浦引发参量振荡,单孤子态光谱跨度超过40THz,通过实验装置识别发射梳线的轨道角动量状态,装置中模式解锁微梳不能提供稳定干涉图案。
时空特性:强度在孤子微梳的重复频率下围绕光轴旋转,发射光束具有双螺旋强度分布,围绕光轴动态旋转,实验和模拟结果一致性突显了装置中产生的孤子微梳的互相干性。
涡旋光谱学:应用涡旋孤子微梳测量光路中拓扑荷的分布,系统信道间串扰的平均值为-18.5dB,测量结果与预设值一致性显著,为准确推算拓扑荷的权重应考虑物体波长相关的反射率测量(透射率测量)。
研究意义:光的空间和频率自由度的相关性为结构光的生成、操纵和检测提供新范式,许多光频梳技术可应用于光的轨道角动量,涡旋孤子微梳将加速复杂结构光在相关应用中的部署。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30