光子芯片上的集成涡旋孤子微梳:实现光频率与轨道角动量组合控制
研究背景:光的频率和轨道角动量的协同控制为时空光波形的产生和光学计量提供新机会,但物理实现存在挑战,微光子技术可在较小占地面积上创建和检测轨道角动量光束,光学微谐振器是新兴的涡旋发射平台。

原理:连续波泵浦激光进入微谐振器产生孤子微梳,内周刻有角光栅使微梳发射到自由空间,携带不同轨道角动量,体现频率和轨道角动量的双射关系。
器件:用4μm硅基底和800nm厚氮化硅薄膜制造微谐振器,平均半径和宽度分别为22μm和2μm,自由光谱范围约1THz,光栅元件设计为椭圆形,垂直发射效率7%,模式系列色散显示反常群速度色散,固有品质因数为179万,倍频分裂接近设计值,装置抑制了不希望的后向散射。

光谱特性:微谐振器被放大的连续波激光泵浦引发参量振荡,单孤子态光谱跨度超过40THz,通过实验装置识别发射梳线的轨道角动量状态,装置中模式解锁微梳不能提供稳定干涉图案。
时空特性:强度在孤子微梳的重复频率下围绕光轴旋转,发射光束具有双螺旋强度分布,围绕光轴动态旋转,实验和模拟结果一致性突显了装置中产生的孤子微梳的互相干性。

涡旋光谱学:应用涡旋孤子微梳测量光路中拓扑荷的分布,系统信道间串扰的平均值为-18.5dB,测量结果与预设值一致性显著,为准确推算拓扑荷的权重应考虑物体波长相关的反射率测量(透射率测量)。

研究意义:光的空间和频率自由度的相关性为结构光的生成、操纵和检测提供新范式,许多光频梳技术可应用于光的轨道角动量,涡旋孤子微梳将加速复杂结构光在相关应用中的部署。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
