【光学前沿】可编程集成光子学:开启自由空间结构光的新时代
2024年8月23日,一项关于用可编程集成光子学产生自由空间结构光的研究成果引起了广泛关注。
结构光在现代众多应用中占据着至关重要的地位,从先进的成像技术到量子通信领域,其作用不可小觑。而可重构集成光子学的出现,为光束整形开辟了全新的途径。与传统方法相比,它具有显著的优势,如超快的速度、更小的占地面积、卓越的鲁棒性以及高效的转换效率。

该技术基于集成光子学的结构光生成系统,其工作原理精妙而复杂。首先,通过计算机计算并存储控制参数,将激光源的相干光耦合到单个注入波导。接着,在波导网中巧妙地操纵光的分布,最终通过外耦合器阵列在远场形成所需的场分布。其中,输出模式的发射器底层光子架构基于15个可重构马赫曾德干涉仪的网格。光在这里被转换为16个复值片上场,而4×4的方形发射器阵列则作为自由空间输出接口。通过精确的计算重叠积分,可以确定产生所需远场分布的片上场振幅。
为了确保光子网格的精准校准和有效控制,研究人员采用了先进的校准策略。将已知输入光束发送到光栅耦合器阵列进行校准,通过多参数拟合来表征电路中相关组件,从而获得芯片生成任意输出分布所需的设置。在自由空间光场方面,利用理论傅里叶光学计算单个发射器的远场,进而计算相干发射器阵列的总远场。生成图案的阵列状属性由基本发射器的间距、数量和单个角发射光谱共同决定。
实验装置的设计也十分严谨。实验光学装置包括将自由空间激光束聚焦到光子芯片的输入光栅耦合器,输出光由显微镜物镜收集和自准直仪自准,通过成像到相机评估结构光的角谱。
通过该技术,研究人员成功配置光子处理器产生了包括高阶束阵列和模态叠加的各种自由空间图案,如不同阶数的厄米-高斯光束和拉盖尔-高斯光束阵列、光束叠加等。尽管在实际应用中可能存在微小偏差,但这可能是由校准或制造差异造成的,随着技术的不断进步,这些问题有望得到进一步解决。
可编程集成光子学在产生自由空间结构光方面有着巨大的潜力。预计发射器总数将不断增加,从而能够产生更加复杂的光分布;新型集成光学元件和构建块将持续涌现;工作波长有望在可见光谱范围内拓展;输出场切换速度也可进一步改善,甚至可以实现完全集成的系统。
可编程集成光子学为自由空间结构光的产生带来了革命性的变化,它将在科学研究和实际应用中发挥越来越重要的作用,开启一个充满无限可能的新时代。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
