【光学前沿资讯】950nm高能倍频掺铥光纤啁啾脉冲放大系统的突破与应用
高能激光系统在众多领域的重要性日益凸显。其中,950nm高能倍频掺铥光纤啁啾脉冲放大系统的研究取得了令人瞩目的成果。
这项研究具有重要的背景意义。高能掺铥飞秒激光系统在医学、材料加工和生物医学成像等领域应用广泛。然而,在950nm波长窗口,主流增益光纤的缺乏成为制约其发展的因素。现有基于孤子自频移的光纤系统在该波长附近脉冲能量有限且系统复杂。因此,开发倍频超快铥激光器对于实现高速、大视场的双光子显微镜等应用具有关键意义。

该激光系统的构成十分精妙。它由放大的高能掺铥超快光纤激光器和二次谐波发生装置组成。其中,掺铥啁啾脉冲放大系统包括锁模掺铥耗散孤子振荡器、光纤展宽器、三个光纤放大器和自由空间脉冲压缩器。
振荡器采用单向全光纤环形结构,通过混合锁模方案实现可靠自启动,产生稳定的上啁啾耗散孤子脉冲,平均功率为1.5mW,脉冲能量为0.16nJ,中心波长为1901nm。展宽器则使用两种超高数值孔径光纤将种子脉冲时间加宽到94ps。前置放大器和功率放大器通过两级级联和特殊的泵浦方式,将平均脉冲功率大幅增加。脉冲压缩环节使放大的脉冲在自由空间中被压缩至490fs,脉冲能量达394nJ。而二次谐波产生部分,压缩的1.9µm脉冲在周期性极化铌酸锂晶体中倍频,获得了中心波长为954nm、脉冲能量为138nJ的高质量脉冲。
该系统能够产生高达394nJ的压缩脉冲,倍频后可提供138nJ脉冲,空间光束质量接近衍射极限。这一突破使得其在材料加工、生物医学手术和双光子显微镜等广泛应用中展现出巨大的潜力。
在研究人员方面,ShutaoXu博士和MichelleY.Sander副教授的努力为这一成果的取得奠定了坚实的基础。他们在超快光纤激光加工器领域的深入研究和不断探索,为推动相关技术的发展做出了重要贡献。
950nm高能倍频掺铥光纤啁啾脉冲放大系统的成功研发,欧光科技相信能为众多领域带来了新的机遇和可能性,也为未来的科技进步注入了强大的动力。
-
高斯光束在激光传输中的标准形态与核心应用原理
激光测距的精准聚焦、光纤通信的远距离稳定传输、激光医疗的精准靶向作用——这些现代激光技术的实现,均以高斯光束为核心支撑。作为激光传输的“标准形态”,高斯光束之所以能成为光学工程领域的核心模型,其背后蕴含着严密的理论推导与显著的应用优势,下文将从理论基础、核心参数、技术优势及应用场景展开系统阐述。
2025-11-18
-
光学设计关键技术,基于材料替换的公差灵敏度优化研究
光学系统设计的核心目标是实现“高性能与可制造性的统一”。在实际工程应用中,部分方案虽表面满足光学性能指标,且结构设计相近,但因公差灵敏度过高,易导致加工成本激增、交付周期延长,甚至无法满足量产需求。材料选择作为光学设计的核心环节,不仅影响光学性能调控,更是优化公差特性的关键变量,相关实践研究具有重要工程价值。
2025-11-18
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
