【光学前沿资讯】950nm高能倍频掺铥光纤啁啾脉冲放大系统的突破与应用
高能激光系统在众多领域的重要性日益凸显。其中,950nm高能倍频掺铥光纤啁啾脉冲放大系统的研究取得了令人瞩目的成果。
这项研究具有重要的背景意义。高能掺铥飞秒激光系统在医学、材料加工和生物医学成像等领域应用广泛。然而,在950nm波长窗口,主流增益光纤的缺乏成为制约其发展的因素。现有基于孤子自频移的光纤系统在该波长附近脉冲能量有限且系统复杂。因此,开发倍频超快铥激光器对于实现高速、大视场的双光子显微镜等应用具有关键意义。
该激光系统的构成十分精妙。它由放大的高能掺铥超快光纤激光器和二次谐波发生装置组成。其中,掺铥啁啾脉冲放大系统包括锁模掺铥耗散孤子振荡器、光纤展宽器、三个光纤放大器和自由空间脉冲压缩器。
振荡器采用单向全光纤环形结构,通过混合锁模方案实现可靠自启动,产生稳定的上啁啾耗散孤子脉冲,平均功率为1.5mW,脉冲能量为0.16nJ,中心波长为1901nm。展宽器则使用两种超高数值孔径光纤将种子脉冲时间加宽到94ps。前置放大器和功率放大器通过两级级联和特殊的泵浦方式,将平均脉冲功率大幅增加。脉冲压缩环节使放大的脉冲在自由空间中被压缩至490fs,脉冲能量达394nJ。而二次谐波产生部分,压缩的1.9µm脉冲在周期性极化铌酸锂晶体中倍频,获得了中心波长为954nm、脉冲能量为138nJ的高质量脉冲。
该系统能够产生高达394nJ的压缩脉冲,倍频后可提供138nJ脉冲,空间光束质量接近衍射极限。这一突破使得其在材料加工、生物医学手术和双光子显微镜等广泛应用中展现出巨大的潜力。
在研究人员方面,ShutaoXu博士和MichelleY.Sander副教授的努力为这一成果的取得奠定了坚实的基础。他们在超快光纤激光加工器领域的深入研究和不断探索,为推动相关技术的发展做出了重要贡献。
950nm高能倍频掺铥光纤啁啾脉冲放大系统的成功研发,欧光科技相信能为众多领域带来了新的机遇和可能性,也为未来的科技进步注入了强大的动力。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30