突破!全自由度时空光调制器的创新研究
对光场的全面复杂控制一直是一个重要且具有挑战性的目标。近日,Christopher L. Panuski等人的研究为实现这一目标带来了新的突破,他们通过可编程光子晶体腔阵列的四个关键进展,成功解决了在光场空间和时间区域内控制所有自由度的难题。
传统的基于液晶或微镜的空间光调制器存在着有限的调制带宽和像素密度,这严重阻碍了对光场的完全控制。而此次研究提出的新的谐振空间光调制器架构,为克服这些限制提供了创新性的解决方案。
研究人员采用了反向设计的谐振像素,通过巧妙修改孔配置,使亚波长、二维光子晶体腔的高品质因子模式能够实现理想孔径的功能,打破了传统的耦合品质因子权衡,从而在空间带宽限制下实现了高性能的光束成形。
他们开发了全晶圆深紫外光刻工艺,成功制造出铸造厂制造的高精度微腔阵列,将卓越的单器件性能扩展到大型腔体阵列,创造出高品质因子晶格。
基于激光辅助热氧化开发的全息修剪技术,是自动化、低损耗且具有皮米精度的修整程序,为使用高品质因子谐振器的可扩展集成光子学开辟了道路。
通过全光空间光调制,将空间和时间上的可见泵浦脉冲分别限制在硅自由载流子扩散长度和寿命内,使多模可编程光学器件接近时空控制的基本极限,成功验证了窄带光场近乎完全的时空控制。
这项研究成果由来自美国麻省理工学院电气工程与计算机科学系的Christopher L. Panuski和Dirk Englund共同完成。欧光科技相信这一突破将为未来光场控制的相关应用带来更多的可能性和创新发展。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30