【光学前沿】二维材料引领可调谐非线性超构光学新发展
近日,发表于《AdvancedPhotonics》2024年第3期的研究成果展示了基于二维材料的线性和非线性可调谐超构光学的最新进展与挑战。
超构光学能在纳米尺度操纵光场,可调谐超构光学的发展有望推动多个领域的创新。二维材料因其特殊的电子和光学特性,在实现可调谐超构光学方面显示出强大潜力。将超构光学与二维材料相结合,对增强和调整非线性效应具有重要意义。
在二维激子用于可调谐超构光学方面,激子在二维材料的光学和电子性能中至关重要,同一材料的结合能值受多种因素影响可能存在差异。三激子对过渡金属二硫化物的光学性能有显著影响,但对其结合能的观测有限。通过门控、掺杂或光激发控制二维材料中载流子浓度,可调节激子数量从而影响材料光学响应,这一效应可用于动态控制元光学器件。为增强激子共振,低温下用六方氮化硼封装二维器件是普遍方法,但要实现广泛应用,还需发展器件在室温下工作的能力。目前WS₂是室温下的候选材料之一,但该领域仍面临精确控制外部刺激和激子共振窄带性质等挑战。
二维材料中的等离子体激元和声子极化激元可在纳米尺度实现受限和增强的光-物质相互作用,导致高度可调的光学特性。石墨烯可通过掺杂实现高度可调的导电性,是中红外光学器件的理想候选者,其层状结构还为其他可能性提供空间。二维材料的多样性可将可调谐等离激元推进到近红外甚至可见范围。h-BN中的声子极化激元可根据晶体厚度和周围介电环境进行被动调谐,利用二维材料相关特性调谐极化子是未来的研究方向。
非线性超表面可实现平面表面上的非线性现象,全介电超表面具有低损耗和高损伤阈值的优点。二维材料及其复合结构在非线性光学领域展现出巨大潜力,二维材料超表面具有多种优点,可用于研究常见非线性光学效应,还可通过与其他材料结合增强二阶非线性过程。
研究人员聚焦于可调谐二维材料超构光学,介绍了二维系统中可调谐激子等,并展望了该领域的发展前景。二维材料以其独特的可调谐和非线性光学特性,为光子学领域带来了巨大的发展机遇,推动其在材料生长、堆叠和纳米制造方面的应用,将促进光子学的整体发展。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30