【光学前沿资讯】超大范围光学相干微血管造影拼接技术
在医学领域,光学相干断层扫描血管造影技术(OCTA)是一种非常有用的成像技术,它可以帮助医生观察人体微血管的结构和功能。然而,目前的OCT系统存在一个局限性,就是单次扫描的视场有限,无法获得大范围的图像。
为了解决这个问题,科学家们采用了图像配准算法,将多个局部图像拼接成大范围图像。其中,傅里叶-梅林变换方法是一种常用的算法,但它需要待配准图像之间有较大的重叠区域,这会导致扫描效率低,还容易引入抖动噪声,影响患者和操作人员的体验。
在这项研究中,科学家们详细比较了傅里叶-梅林变换方法中使用幅度相关和相位相关来计算平移和旋转偏移量的性能表现。他们发现,基于幅度相关的平移旋转配准方法(DCCTRR)在保证配准精度的同时,能够显著降低图像配准所需的重叠率。
通过模拟实验,科学家们用直径相当的丝织物模拟生物组织的微血管,比较了DCCTRR和传统FMT方法的配准结果。结果显示,DCCTRR方法在重叠率降低时,归一化配准精度下降更缓慢,而且成功配准所需的重叠率更低,仅需12.58%,而FMT方法至少需要61.86%的重叠率。
此外,科学家们还评估了DCCTRR和FMT方法应对背景噪声的鲁棒性。在图像中添加高斯噪声后,DCCTRR方法的归一化信噪比和归一化配准精度下降趋势更平缓,说明它在处理背景噪声方面具有更强的鲁棒性和抗干扰能力。
为了进一步验证DCCTRR方法在实际应用中的性能,科学家们进行了活体实验。实验中,将待配准的人手指毛细血管OCTA图像的重叠率逐渐减少,结果表明DCCTRR方法可成功配准的最小重叠率为12.09%,而FMT方法无法成功配准重叠率为30%的图像,实验与模拟结果一致。
科学家们以20%的相邻重叠率多次扫描志愿者的手指,并使用DCCTRR方法配准所有局部图像,成功获得了一幅大范围OCTA图像。
未来,科学家们将继续改进图像配准算法,与并行计算技术结合,缩短计算时间,实现实时或近乎实时的处理速度。同时,他们还将考虑结合OCT与机械手臂,加上DCCTRR配准方法,实现对患者的大范围自动化扫描,提高扫描效率和准确性。
总之,这项研究为超大范围OCTA成像提供了一种更有效的图像配准方法,有望为医生提供更全面、准确的诊断信息。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15