中红外光纤振荡器实现可调谐孤子和可切换双波长脉冲
近日,一项有关中红外光纤振荡器的研究取得了重要突破。

近十年来,中红外光纤激光器发展迅速,但将近红外飞秒脉冲激光源波长扩展到中红外波段面临诸多挑战。锁模光纤振荡器虽在脉冲整形和调节方面具备灵活性,但其波长选择方法有限。而非线性偏振旋转锁模技术在中红外氟化物光纤振荡器中的应用研究相对较少。
研究人员精心设计了实验装置,其中非线性偏振旋转锁模腔的泵浦源为高功率976nm激光二极管,增益光纤为3.1m的双包层7mol%掺铒氟化物光纤,还包括透镜、二向色镜、四分之一波片、偏振相关隔离器、半波片、铌酸锂双折射片、输出耦合器等诸多关键部件。同时,为测量Lyot滤波器透射光谱,搭建了专门的测量装置。

通过实验,取得了一系列令人瞩目的成果。当泵浦功率增加到1.3W时,实现了稳定的基阶连续波锁模状态;在1.38W时,输出转变为准稳定脉冲状态;1.50W时,不稳定的调Q锁模终止。脉冲间间隔与腔往返时间匹配良好,工作在基阶状态,基频拍频信噪比高,不存在多脉冲现象。其中心波长为2794.5nm,半最大全宽为35.1nm,脉冲宽度为239fs,时带积接近变换极限,最大孤子平均功率为136.3mW,脉冲能量和峰值功率分别为2.6nJ和10.9kW。

不仅如此,通过旋转双折射片并改变泵浦功率,锁模脉冲的波长能够从2752.4nm至2807.2nm连续调谐(约55nm),脉冲宽度在199-270fs之间变化。在较高泵浦水平下,还可通过单独旋转双折射片实现双波长锁模状态,且有两种可切换的状态。
这项研究意义重大,研究人员在非线性偏振旋转锁模掺Er³⁺光纤振荡器中成功实现了可调谐孤子和可切换双波长脉冲的产生。未来,该方法有望转移到其他稀土掺杂光纤平台,为开发更多功能的中红外超短激光源奠定基础。欧光科技相信这一突破将为相关领域的发展带来新的机遇和可能。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
