【光学资讯】超构表面技术:下一代光学成像与显示的创新前沿
南京大学祝世宁院士、王漱明教授团队基于多维光场调控技术,全面回顾了超构表面在推动下一代光学成像与显示系统方面的创新性思路与进展。该团队结合相关智能算法,综述了其在多维成像、全息显示以及这些技术的交叉领域的应用,并探讨了其在计算成像、超分辨成像、可调谐显示技术,以及与光学微操控和量子技术协同发展的潜力。最后,该团队对超构表面技术在成像与显示领域的广泛应用前景及未来研究方向进行了展望。
2.1超构表面的设计基础与优化设计方案
该团队从广义斯涅尔定律出发,全面分析了成像所需要的相位机制,简要介绍了全息相位的计算原理及目前广泛使用的算法。同时,概述了基于优化算法的原理及功能性成像和显示器件,如:基于拓扑优化、遗传算法、神经网络等设计方案,能最大限度得到高指标的微纳元件;根据不同需求选择算法,能节省计算成本,最终实现优异的成像与显示功能。
2.2超构透镜成像技术
基于超构透镜的成像技术已经成为超构表面最重要的应用之一。由于材料具有色散,普通超构透镜的工作带宽严重受限,这严重影响了彩色成像的质量。该团队系统地讨论了在超构透镜成像方面的色差调控工作及其应用,包括消色差全彩色成像、消色差光场成像与四维光谱光场成像等,这些研究成果极大地推动了可穿戴设备、集成化成像系统与便携式光谱仪领域中的技术革新,如图1所示。此外,利用多个光学维度或具有结构化的特殊光场,不仅可以实现复用的成像功能,极大地增加超构表面的功能多样性,还能重构出物体的表面形状,实现三维成像。

2.3超构表面显示领域
基于超构表面的全息显示技术提供了更高的可控自由度和更强的三维显示能力,极大地扩展了显示技术的应用范围,并为高度逼真的视觉体验提供了新的途径,如图2所示。增强现实(AR)和虚拟现实(VR)近眼技术在当今世界发挥着越来越重要的作用,但目前还存在数据量大、分辨率低的问题。超构表面的兴起使实现更薄、更高效的近眼显示设备成为可能,推动了AR和VR技术的进一步发展。
该团队依次介绍了基于超构表面的全息显示技术(标量全息、矢量全息等),讨论了三维显示技术(三维全息、光场显示等),并分析了由超构表面实现的AR/VR技术的进步(全彩显示器、波导耦合显示器等)。此外,比较了不同设计参数在超构表面成像和显示能力方面的差异,分析了超构表面成像与显示所面临的诸多挑战,并针对这些挑战提出了可行的解决方案。相信随着技术的进步和原理的创新,成像和显示技术将得到进一步的发展和应用。

2.4超构表面应用前景
从跨学科的角度来看,超构表面创新地解决了复杂的科学和工程挑战,被广泛应用于计算成像、超分辨率显微镜、光学微操作、动态可调显示和非经典量子领域,如图3所示:与计算成像结合,超构表面可以处理和提取高维图像信息;与生物医学结合,超构表面可充分发挥体积优势,实现细胞的显微和生物内窥镜成像,进而在光学显微操作技术上具有独特的优势;将各种材料和光学技术相结合可以实现不同场景下动态可调的光学响应;在量子场中,基于超构表面可以实现非经典成像和显示。
利用超构表面的巨大优势,结合多领域协同创新,克服现有的技术壁垒,可为这一充满活力的领域的发展方向提供前瞻性视角,从而推动整个光学成像与显示技术的飞跃发展。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
