晶体棱镜在偏振光应用中的优势与类型
晶体双折射现象中的o光和e光均为100%的线偏振光,利用此现象制作的偏振器件性能优于传统的玻片堆和人造偏振片,因此被广泛应用于起偏或检偏领域。晶体棱镜作为一种偏振器,通常由两块按特定方式切割的晶体三棱镜组合而成。通过晶体棱镜,入射的自然光被分解为两束线偏振光,从空间不同方向出射。以下将介绍几种典型的晶体棱镜。

一、尼科耳棱镜
尼科耳棱镜(Nicolprism)通过晶体棱镜将入射的自然光分解为两束线偏振光,从空间不同方向出射。该棱镜由两块方解石直角棱镜黏合而成,其光轴平行于两个端面。常用的黏合剂为加拿大树胶,对于Na黄光,其折射率约为1.55,介于棱镜的两个主折射率ne≈1.4864和n0≈1.6584之间。o光和e光具有不同的折射率,但对于加拿大树胶,由于其各向同性,折射率相同。正入射的自然光在左侧第一块棱镜传播时,虽然表观上不发生双折射,但e光为快光而o光为慢光。当它们到达界面AB时,对o光而言,是从光密介质到光疏介质,只要入射角大于临界角,就将发生全反射。对e光而言,是从光疏介质到光密介质,不可能发生全反射,而是发生常规的折射现象,e光将从CB面出射。简言之,在尼科耳棱镜的黏合面,o光全反射,e光透射,两者传播方向分离。通常将全反射o光束到达的侧面涂黑以吸收o光,从而避免实验时的杂散光,而从入射光透射的方向获得一束线偏振光,其振动方向平行于主平面或主截面,最终尼科耳棱镜实现了偏振器的功能。此外,考虑到入射光束并不一定是平行光束,它有一定的发散角,一般设定io值要稍大于i值几度。即使这样,能发生全反射的o光束发散角是受限的,同理,不发生全反射的e光束发散角也是受限的。因此,尼科耳棱镜的一个缺点是入射光束的发散角不能太大。
二、罗雄棱镜
罗雄棱镜(Rochonprism)由两块冰洲石直角三棱镜黏合而成。第一块棱镜的光轴垂直于棱镜入射表面,第二块棱镜的光轴平行于表面。当自然光正入射于第一块棱镜时不发生双折射,光束横平面上各方向的振动均以相同速度传播,到达界面进入第二块棱镜便出现双折射。简而言之,罗雄棱镜第一块棱镜中无双折射,第二块棱镜中有双折射。假设光到达黏合界面的入射角为i,第二块棱镜中o光、e光的折射角为i2o、i2e。因此,o光、e光传播方向分离。只要将输出的两路偏振光挡掉一路,罗雄棱镜可以作为偏振器件使用,也可以用于偏振分光元件,在一些激光设备中可以用它作为内调制的耦合输出元件。
三、沃拉斯顿棱镜
沃拉斯顿棱镜(Wollastonprism)由两块冰洲石直角三棱镜黏合而成,第一块棱镜的光轴平行于入射表面,并与第二块棱镜的光轴方向正交。在第一块棱镜中作为慢光的o光,进入第二块棱镜后成为快光的e光。同理,e光从第一棱镜进入第二棱镜后其身份也发生了变化,转变为o光。简而言之,第一镜中o光进入第二镜时,变为e光;第一镜中e光进入第二镜时,变为o光。因此,通过沃拉斯顿棱镜出现了双折射现象,o光、e光传播方向分离。在同样的棱角条件下,沃拉斯顿棱镜生成的两束线偏振光其空间分离角显然地大于罗雄棱镜。
资料来源:公众号睐芯科技Lightsense
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
