晶体棱镜在偏振光应用中的优势与类型
晶体双折射现象中的o光和e光均为100%的线偏振光,利用此现象制作的偏振器件性能优于传统的玻片堆和人造偏振片,因此被广泛应用于起偏或检偏领域。晶体棱镜作为一种偏振器,通常由两块按特定方式切割的晶体三棱镜组合而成。通过晶体棱镜,入射的自然光被分解为两束线偏振光,从空间不同方向出射。以下将介绍几种典型的晶体棱镜。
一、尼科耳棱镜
尼科耳棱镜(Nicolprism)通过晶体棱镜将入射的自然光分解为两束线偏振光,从空间不同方向出射。该棱镜由两块方解石直角棱镜黏合而成,其光轴平行于两个端面。常用的黏合剂为加拿大树胶,对于Na黄光,其折射率约为1.55,介于棱镜的两个主折射率ne≈1.4864和n0≈1.6584之间。o光和e光具有不同的折射率,但对于加拿大树胶,由于其各向同性,折射率相同。正入射的自然光在左侧第一块棱镜传播时,虽然表观上不发生双折射,但e光为快光而o光为慢光。当它们到达界面AB时,对o光而言,是从光密介质到光疏介质,只要入射角大于临界角,就将发生全反射。对e光而言,是从光疏介质到光密介质,不可能发生全反射,而是发生常规的折射现象,e光将从CB面出射。简言之,在尼科耳棱镜的黏合面,o光全反射,e光透射,两者传播方向分离。通常将全反射o光束到达的侧面涂黑以吸收o光,从而避免实验时的杂散光,而从入射光透射的方向获得一束线偏振光,其振动方向平行于主平面或主截面,最终尼科耳棱镜实现了偏振器的功能。此外,考虑到入射光束并不一定是平行光束,它有一定的发散角,一般设定io值要稍大于i值几度。即使这样,能发生全反射的o光束发散角是受限的,同理,不发生全反射的e光束发散角也是受限的。因此,尼科耳棱镜的一个缺点是入射光束的发散角不能太大。
二、罗雄棱镜
罗雄棱镜(Rochonprism)由两块冰洲石直角三棱镜黏合而成。第一块棱镜的光轴垂直于棱镜入射表面,第二块棱镜的光轴平行于表面。当自然光正入射于第一块棱镜时不发生双折射,光束横平面上各方向的振动均以相同速度传播,到达界面进入第二块棱镜便出现双折射。简而言之,罗雄棱镜第一块棱镜中无双折射,第二块棱镜中有双折射。假设光到达黏合界面的入射角为i,第二块棱镜中o光、e光的折射角为i2o、i2e。因此,o光、e光传播方向分离。只要将输出的两路偏振光挡掉一路,罗雄棱镜可以作为偏振器件使用,也可以用于偏振分光元件,在一些激光设备中可以用它作为内调制的耦合输出元件。
三、沃拉斯顿棱镜
沃拉斯顿棱镜(Wollastonprism)由两块冰洲石直角三棱镜黏合而成,第一块棱镜的光轴平行于入射表面,并与第二块棱镜的光轴方向正交。在第一块棱镜中作为慢光的o光,进入第二块棱镜后成为快光的e光。同理,e光从第一棱镜进入第二棱镜后其身份也发生了变化,转变为o光。简而言之,第一镜中o光进入第二镜时,变为e光;第一镜中e光进入第二镜时,变为o光。因此,通过沃拉斯顿棱镜出现了双折射现象,o光、e光传播方向分离。在同样的棱角条件下,沃拉斯顿棱镜生成的两束线偏振光其空间分离角显然地大于罗雄棱镜。
资料来源:公众号睐芯科技Lightsense
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15