晶体棱镜在偏振光应用中的优势与类型
晶体双折射现象中的o光和e光均为100%的线偏振光,利用此现象制作的偏振器件性能优于传统的玻片堆和人造偏振片,因此被广泛应用于起偏或检偏领域。晶体棱镜作为一种偏振器,通常由两块按特定方式切割的晶体三棱镜组合而成。通过晶体棱镜,入射的自然光被分解为两束线偏振光,从空间不同方向出射。以下将介绍几种典型的晶体棱镜。

一、尼科耳棱镜
尼科耳棱镜(Nicolprism)通过晶体棱镜将入射的自然光分解为两束线偏振光,从空间不同方向出射。该棱镜由两块方解石直角棱镜黏合而成,其光轴平行于两个端面。常用的黏合剂为加拿大树胶,对于Na黄光,其折射率约为1.55,介于棱镜的两个主折射率ne≈1.4864和n0≈1.6584之间。o光和e光具有不同的折射率,但对于加拿大树胶,由于其各向同性,折射率相同。正入射的自然光在左侧第一块棱镜传播时,虽然表观上不发生双折射,但e光为快光而o光为慢光。当它们到达界面AB时,对o光而言,是从光密介质到光疏介质,只要入射角大于临界角,就将发生全反射。对e光而言,是从光疏介质到光密介质,不可能发生全反射,而是发生常规的折射现象,e光将从CB面出射。简言之,在尼科耳棱镜的黏合面,o光全反射,e光透射,两者传播方向分离。通常将全反射o光束到达的侧面涂黑以吸收o光,从而避免实验时的杂散光,而从入射光透射的方向获得一束线偏振光,其振动方向平行于主平面或主截面,最终尼科耳棱镜实现了偏振器的功能。此外,考虑到入射光束并不一定是平行光束,它有一定的发散角,一般设定io值要稍大于i值几度。即使这样,能发生全反射的o光束发散角是受限的,同理,不发生全反射的e光束发散角也是受限的。因此,尼科耳棱镜的一个缺点是入射光束的发散角不能太大。
二、罗雄棱镜
罗雄棱镜(Rochonprism)由两块冰洲石直角三棱镜黏合而成。第一块棱镜的光轴垂直于棱镜入射表面,第二块棱镜的光轴平行于表面。当自然光正入射于第一块棱镜时不发生双折射,光束横平面上各方向的振动均以相同速度传播,到达界面进入第二块棱镜便出现双折射。简而言之,罗雄棱镜第一块棱镜中无双折射,第二块棱镜中有双折射。假设光到达黏合界面的入射角为i,第二块棱镜中o光、e光的折射角为i2o、i2e。因此,o光、e光传播方向分离。只要将输出的两路偏振光挡掉一路,罗雄棱镜可以作为偏振器件使用,也可以用于偏振分光元件,在一些激光设备中可以用它作为内调制的耦合输出元件。
三、沃拉斯顿棱镜
沃拉斯顿棱镜(Wollastonprism)由两块冰洲石直角三棱镜黏合而成,第一块棱镜的光轴平行于入射表面,并与第二块棱镜的光轴方向正交。在第一块棱镜中作为慢光的o光,进入第二块棱镜后成为快光的e光。同理,e光从第一棱镜进入第二棱镜后其身份也发生了变化,转变为o光。简而言之,第一镜中o光进入第二镜时,变为e光;第一镜中e光进入第二镜时,变为o光。因此,通过沃拉斯顿棱镜出现了双折射现象,o光、e光传播方向分离。在同样的棱角条件下,沃拉斯顿棱镜生成的两束线偏振光其空间分离角显然地大于罗雄棱镜。
资料来源:公众号睐芯科技Lightsense
-
平行光管如何精准测量光学系统的五大核心指标
在智能手机成像、卫星遥感探测、自动驾驶环境感知等各类依赖光学技术的场景中,平行光管作为关键检测设备,以模拟无限远目标的核心功能,为光学系统性能量化提供标准化基准。从工业量产的质检流程到尖端科研的校准实验,其在保障光学设备精度与可靠性方面发挥着不可替代的作用,是光学工程领域不可或缺的“精准标尺”。
2025-12-08
-
【光学材料】单晶衍射呈离散斑点、多晶衍射呈同心圆环的机理研究
在材料科学的结构表征领域,透射电子显微镜(TEM)选区电子衍射(SAED)技术是解析晶体材料微观结构的核心手段之一。相同测试条件下,单晶材料的衍射图案表现为离散分布的明亮斑点,而多晶材料则呈现规整的同心圆环,这一现象是晶体内部微观结构特征的直接映射。本文将从衍射基本原理、晶粒取向差异、信号形成机制及特殊情况延伸等维度,系统阐释这一现象的本质规律。
2025-12-08
-
OptiSurf®镜面定位仪如何成为高精度光学测量新标杆?其技术优势与应用价值何在?
测量精度直接决定了光学设备的性能上限。由德国全欧光学TRIOPTICS设计的OptiSurf®镜面定位仪,凭借其非接触式测量技术与卓越的精度表现,成为解决光学元件中心厚度及空气间隔测量难题的理想工具,为光学行业的高精度生产与研发提供了可靠支撑。
2025-12-08
-
热红外检测核心技术解析:热释电与热电堆的原理及应用差异
在红外热探测、气体分析、激光功率监测等现代工业与科研领域,热-电转换技术是实现非接触式温度感知与能量检测的核心。其中,热释电效应与热电堆传感器作为两大主流热红外检测机制,凭借各自独特的物理特性,支撑着不同场景下的精准测量需求。本文将从原理本质、核心特性、应用场景等维度,深入解析两者的技术差异与选型逻辑。
2025-12-08
