高精度中心偏差测量仪 OptiCentric® UP系列解读:大口径光学系统的测量和装配的不二之选
德国全欧光学(TRIOPTICS)推出的大口径中心偏差测量仪——OptiCentric®UP。该设备专为大口径高负载光学系统的中心偏差测量及装配设计,具备高精度和高可靠性,能够满足各种复杂光学系统的测量需求。

OptiCentric®UP系列包括OptiCentric®300UP、OptiCentric®600UP和OptiCentric®800UP等多种型号,各型号在测量范围、最大样品直径、最大样品重量和最大样品高度等方面有所差异,用户可根据具体需求选择合适的型号。该测量仪的中心偏差测量精度可达±0.2μm或±2″,测量重复精度为±0.1μm或±1″,确保了测量结果的准确性。
OptiCentric®UP采用高精度气浮转台,保证了测量的稳定性和精度。该设备的优势包括高精度测量、适用于大口径高负载光学系统、多种型号可选、承载能力强、采用高精度气浮转台以及广泛的应用领域。无论是大型光学仪器的生产还是高精度光学实验的研究,OptiCentric®UP都能发挥重要作用,为大口径光学系统的测量和装配提供了更加可靠和高效的解决方案。
对于对OptiCentric®UP感兴趣的用户,欢迎进一步了解和咨询,相信该设备将为您的光学检测提升带来显著帮助。
-
如何基于技术参数与规范科学选型光模块?
在现代通信与数据传输系统中,光模块作为电信号与光信号转换的关键核心组件,承担着数据发送与接收的重要功能。其一端连接设备电路板以获取电信号,另一端接入光纤线缆实现光信号传输,是保障通信系统高效运行的基础单元。类似于TypeC至USB接口适配器的信号转换作用,光模块的性能表现直接取决于各项技术参数的协同匹配。无论是数据中心高密度互联、5G网络前传部署,还是长距离城域传输系统构建,光模块的科学选型均需以系统掌握其技术参数为前提。
2025-12-05
-
重大突破!清华大学段路明团队实现全功能双类型离子阱量子网络节点,为量子互联网发展奠定重要基础
在量子互联网向规模化、实用化推进的进程中,量子网络节点的通信功能与存储功能兼容性问题长期构成关键技术瓶颈。近日,清华大学段路明院士团队在国际权威期刊《Science Advances》发表重磅研究成果,成功构建全球首个集成“物质光子纠缠产生”“无串扰量子存储”“比特间纠缠门”三大核心功能的双类型离子阱量子网络节点,从根本上解决了传统方案中通信与存储相互干扰的难题,为基于囚禁离子体系的大规模量子网络构建提供了切实可行的技术路径,标志着量子网络领域迎来里程碑式进展。
2025-12-05
-
什么是光声光谱技术?光声融合的前沿检测与应用研究
光作为人类感知世界的重要载体,声作为信息传递的关键媒介,二者的跨界融合催生了光声光谱(PhotoacousticSpectroscopy,简称PAS)这一创新性技术。该技术突破传统检测范式,通过光声信号的转化实现物质特性的精准分析,兼具物理学理论深度与多领域应用价值,已成为科研与产业领域的重要检测手段。
2025-12-05
-
突破动态散射难题!英科学家开创光传播新路径,赋能深层成像与湍流通信
近日,英国埃克塞特大学DavidB.Phillips团队在《Nature Photonics》发表重磅研究,提出一种全新的光传播控制策略,成功实现光在动态强散射介质中的稳定传输。该方法通过识别介质中的稳定区域、规避快速波动部分,从根本上解决了传统技术难以应对的光场畸变问题,为生物成像、光通信等多领域突破提供了核心工具。
2025-12-05
