什么是米氏散射和非选择性散射
在光学中,米氏散射(Mie scattering)和非选择性散射是两种重要的散射现象,它们对于理解大气中光的传播和天空的颜色变化具有关键作用。本文将详细介绍这两种散射现象的物理机制、特点及其在大气科学中的应用。
米氏散射
米氏散射是由德国物理学家古斯塔夫·米(Gustav Mie)在1908年提出的,用于描述粒子尺寸与辐射波长相当或相近时的散射现象。具体来说,当粒子的直径在辐射波长的0.1到10倍之间时,发生的散射即为米氏散射。这种散射主要由大气中的微粒,如烟、尘埃、小水滴及气溶胶等引起。
米氏散射的特点在于其散射强度与波长的关系为λ^-2,这意味着短波长的光(如蓝光)比长波长的光(如红光)散射得更强烈。此外,米氏散射主要表现为前向散射,即散射光主要集中在入射光的方向上。随着粒子尺寸的增大,散射光强度的波动幅度逐渐减小,且散射光的偏振度也较瑞利散射小。
非选择性散射
与米氏散射不同,非选择性散射发生在粒子尺寸远大于辐射波长的情况下。当粒子的直径大于辐射波长的20倍时,散射现象主要表现为非选择性散射。这种散射的特点是散射强度与波长无关,即不同波长的光被散射的程度相同。
非选择性散射常见于云、雾等大气现象中。例如,雾滴的半径通常在1到60微米之间,远大于可见光的波长,因此雾对可见光的散射属于非选择性散射。在这种散射过程中,粒子对辐射的反射和折射占主要地位,导致在宏观上形成均匀的散射效果。
应用与意义
米氏散射和非选择性散射的研究对于大气科学、环境监测和气候研究具有重要意义。例如,通过分析米氏散射可以了解大气中微粒的分布和变化,这对于空气质量监测和气候模型构建至关重要。而非选择性散射的研究则有助于理解云和雾的形成机制,以及它们对太阳辐射的吸收和反射作用,从而影响地球的能量平衡和气候变化。
米氏散射和非选择性散射是大气光学中的两个基本概念,它们揭示了不同尺度粒子对光的散射机制。欧光科技认为深入理解这两种散射现象,不仅能够增进我们对自然界光传播规律的认识,还能为相关科学研究和应用提供理论基础和技术支持。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15