什么是米氏散射和非选择性散射
在光学中,米氏散射(Mie scattering)和非选择性散射是两种重要的散射现象,它们对于理解大气中光的传播和天空的颜色变化具有关键作用。本文将详细介绍这两种散射现象的物理机制、特点及其在大气科学中的应用。

米氏散射
米氏散射是由德国物理学家古斯塔夫·米(Gustav Mie)在1908年提出的,用于描述粒子尺寸与辐射波长相当或相近时的散射现象。具体来说,当粒子的直径在辐射波长的0.1到10倍之间时,发生的散射即为米氏散射。这种散射主要由大气中的微粒,如烟、尘埃、小水滴及气溶胶等引起。
米氏散射的特点在于其散射强度与波长的关系为λ^-2,这意味着短波长的光(如蓝光)比长波长的光(如红光)散射得更强烈。此外,米氏散射主要表现为前向散射,即散射光主要集中在入射光的方向上。随着粒子尺寸的增大,散射光强度的波动幅度逐渐减小,且散射光的偏振度也较瑞利散射小。
非选择性散射
与米氏散射不同,非选择性散射发生在粒子尺寸远大于辐射波长的情况下。当粒子的直径大于辐射波长的20倍时,散射现象主要表现为非选择性散射。这种散射的特点是散射强度与波长无关,即不同波长的光被散射的程度相同。
非选择性散射常见于云、雾等大气现象中。例如,雾滴的半径通常在1到60微米之间,远大于可见光的波长,因此雾对可见光的散射属于非选择性散射。在这种散射过程中,粒子对辐射的反射和折射占主要地位,导致在宏观上形成均匀的散射效果。
应用与意义
米氏散射和非选择性散射的研究对于大气科学、环境监测和气候研究具有重要意义。例如,通过分析米氏散射可以了解大气中微粒的分布和变化,这对于空气质量监测和气候模型构建至关重要。而非选择性散射的研究则有助于理解云和雾的形成机制,以及它们对太阳辐射的吸收和反射作用,从而影响地球的能量平衡和气候变化。
米氏散射和非选择性散射是大气光学中的两个基本概念,它们揭示了不同尺度粒子对光的散射机制。欧光科技认为深入理解这两种散射现象,不仅能够增进我们对自然界光传播规律的认识,还能为相关科学研究和应用提供理论基础和技术支持。
-
i3D光学形貌3D检测设备:赋能精密光学元件超精密测量,引领行业检测技术革新
在光学制造、精密元件研发及高端装备领域,“测量精度”与“检测效率”是决定产品品质、研发进度及产能水平的核心要素。传统接触式检测技术易对精密元件表面造成划伤或应力变形,单一波长测量方案难以适配透明与非透明材料的多样化检测需求,且长行程测量中的误差累积问题,长期制约着行业超精密检测目标的实现。在此背景下,i3D系列光学形貌3D检测设备凭借非接触式测量原理、多维度超精密校准体系及全场景适配能力,重新定义旋转对称光学元件检测标准,为行业突破技术瓶颈提供关键支撑。
2025-10-24
-
集成氮化硅光子学驱动的微腔克尔光频分技术:芯片级低噪声毫米波振荡器的实现与突破
近期,美国弗吉尼亚大学电气与计算机工程系ShumanSun团队在《NaturePhotonics》(2025年第19卷,637-642页)发表的研究成果,为上述困境提供了突破性解决方案。该团队基于集成氮化硅(SiN)光子学构建微腔克尔光频分系统,成功实现一款超低相位噪声的毫米波振荡器。此项技术不仅突破了传统光频分对辅助控制组件的依赖,更将锁定带宽提升至数十兆赫兹量级,为光频分技术的芯片级产业化应用奠定了关键基础。
2025-10-24
-
晶体、非晶质体与胶体的结构特征及性质差异研究
在材料科学领域,物质的微观结构是决定其宏观性质与应用场景的核心因素。晶体、非晶质体与胶体作为三类典型的固体形态,其内部质点(原子、离子、分子或离子团)的排列方式存在本质差异,进而表现出截然不同的物理化学特性。本文基于空间格子理论与质点排列规律,系统阐述三类物质的结构本质、核心特征及相互转化关系,为理解材料微观结构与宏观性能的关联提供理论支撑。
2025-10-24
-
红外光学材料与涂层:支撑热成像及激光技术发展的核心基础
红外光学技术作为现代科技领域的关键支撑技术,在军事前视红外(FLIR)、民用热成像、天文深空探测、医疗激光治疗等诸多领域发挥着不可替代的作用。其性能水平直接由核心材料与涂层的技术特性所决定。在地球大气层环境中,受水分子、二氧化碳等分子吸收作用的影响,红外波段仅保留三个可有效利用的“传输窗口”,即短波红外(SWIR,波长范围0.753μm)、中波红外(MWIR,波长范围35μm)与长波红外(LWIR,波长范围814μm);而在高空或太空环境下,上述波段间的“空白区域”可实现有效利用,这对红外材料与涂层的波段适配范围提出了更高要求。
2025-10-24
