硅基光电子技术的发展与未来展望
硅基光电子技术自20世纪80年代诞生以来,其发展历程可谓波澜壮阔。这项技术起源于集成电路和光纤技术的迅猛发展,逐渐成为科技界的焦点。1986年,Soref教授首次提出了硅基光电子的概念,并展示了其在制造光子芯片和集成光电子器件方面的潜力。尽管在技术发展的初期,由于研究团队数量有限,主要集中在化合物半导体平台上,进展相对缓慢,但随着21世纪初互联网的蓬勃发展,硅基光电子技术因其与CMOS工艺的兼容性以及大规模低成本量产的潜力,开始受到业界的广泛关注。

Intel等科技巨头通过与高校的紧密合作,在硅基光电子技术上取得了一系列重要突破。这些突破包括高速调制器、激光设备和探测器的实现,这些成果不仅填补了硅基光电子核心功能的空白,而且展示了高集成度光学系统的可行性和潜力。进入2010年之后,硅基光电子技术迎来了高速发展的新阶段,众多公司纷纷推出了基于硅光芯片的产品,同时,硅光代工场的兴起也促进了fabless产业模式的形成和发展。
到了2020年,随着人工智能科技革命的兴起,硅基光电子技术因其在处理海量数据和提供强大算力方面的优势,预计将在未来长期保持高速增长的态势。这项技术的应用领域也在不断扩展,从高性能计算到自动驾驶,再到生物医疗等多个前沿领域,硅基光电子技术正展现出其广泛的应用前景和深远的影响力。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
