硅基光电子技术的发展与未来展望
硅基光电子技术自20世纪80年代诞生以来,其发展历程可谓波澜壮阔。这项技术起源于集成电路和光纤技术的迅猛发展,逐渐成为科技界的焦点。1986年,Soref教授首次提出了硅基光电子的概念,并展示了其在制造光子芯片和集成光电子器件方面的潜力。尽管在技术发展的初期,由于研究团队数量有限,主要集中在化合物半导体平台上,进展相对缓慢,但随着21世纪初互联网的蓬勃发展,硅基光电子技术因其与CMOS工艺的兼容性以及大规模低成本量产的潜力,开始受到业界的广泛关注。
Intel等科技巨头通过与高校的紧密合作,在硅基光电子技术上取得了一系列重要突破。这些突破包括高速调制器、激光设备和探测器的实现,这些成果不仅填补了硅基光电子核心功能的空白,而且展示了高集成度光学系统的可行性和潜力。进入2010年之后,硅基光电子技术迎来了高速发展的新阶段,众多公司纷纷推出了基于硅光芯片的产品,同时,硅光代工场的兴起也促进了fabless产业模式的形成和发展。
到了2020年,随着人工智能科技革命的兴起,硅基光电子技术因其在处理海量数据和提供强大算力方面的优势,预计将在未来长期保持高速增长的态势。这项技术的应用领域也在不断扩展,从高性能计算到自动驾驶,再到生物医疗等多个前沿领域,硅基光电子技术正展现出其广泛的应用前景和深远的影响力。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30