【光学前沿资讯】上海大学创新纪录:红光钙钛矿LED发光效率达28.7%!
上海大学近日宣布,其在钙钛矿LED领域的研究取得重大突破,相关成果已在《Nature》杂志上发表。该研究聚焦于“稳定钙钛矿八面体实现高效红光LED”的主题,展示了在红光钙钛矿LED发光效率方面的显著进展。

钙钛矿发光二极管(LED)作为新兴的显示技术,以其高色纯度、广色域、简化的加工工艺和低成本等特点,成为国际光学设备件研究的前沿领域。尽管绿光钙钛矿LED的发展迅速,但红光钙钛矿LED(波长620-650 nm)的性能提升一直面临挑战,特别是在高偏压下的光谱稳定性问题,限制了其在全彩显示领域的应用。
传统方法中,单端吸附型配位分子在调整碘基钙钛矿发射光谱时,往往会显著降低其荧光量子产率。为解决这一问题,研究团队采用了一种创新的双端有机分子配位策略,通过“锚定”钙钛矿表面来稳定其八面体结构,从而有效克服了光谱调节与光电性质之间的相互制约。
研究结果显示,该团队开发的LED器件在620-650 nm的纯红光范围内实现了光谱的连续可调,其中638 nm发射的LED器件的外量子效率(EQE)达到了28.7%,刷新了红光钙钛矿LED发光效率的记录。此外,该器件在高达8 V的偏压下,其辐射复合中心几乎不发生分离,显示出卓越的光谱稳定性。
来源:上海大学
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
