【光学前沿】一种基于啁啾光纤布拉格光栅的拉伸脉冲锁模扫描激光器
在过去的十年中,针对超高速光学相干层析扫描模式和兆赫以上速度的扫描激光器的研究取得了显著进展。这些研究涵盖了多种技术,包括圆测距光学相干层析成像、光学计算光学相干层析摄影、时间拉伸扫描激光器、声光缺陷扫描激光器、傅立叶域锁模激光器、可调谐垂直腔表面发射激光器以及拉伸脉冲锁模扫描激光器。其中,拉伸脉冲锁模扫描激光器因其无需机械波长扫描滤波器,通过腔内色散介质实现脉冲拉伸和压缩的特性,显示出明显的优势。该设计在100nm的扫描带宽上实现了超过10MHz的速度,相较于传统的色散光纤卷轴,基于啁啾光纤布拉格光栅的设计在1060nm、1300nm和1550nm的中心波长下提供了更为紧凑和简化的设计。

尽管基于啁啾光纤布拉格光栅的激光器设计具有诸多优势,但其面临的技术挑战包括约30%的光透射通过啁啾光纤布拉格光栅,可能导致不必要的激光振荡。为解决这一问题,研究者提出了多种方法,如使用半导体光放大器的开/关调制与调制脉冲同步,以及将两个相同规格的啁啾光纤布拉格光栅结合到激光腔中。然而,这些方法均存在一定的局限性,如工作循环限制、激光噪声增加以及需要额外的腔增强器等。
为克服这些挑战,研究者提出了一种基于θ光纤环几何结构的扫频激光器设计。该设计采用O波段半导体光学放大器作为增益介质,中心波长为1300nm,3-dB光学带宽为87nm。通过80/20光纤耦合器将80%的强度耦合到腔外,光脉冲由40GHz铌酸锂Mach-Zehnder强度调制器产生,电子脉冲的脉冲宽度设置为125ps。该设计通过啁啾光纤布拉格光栅的双通光纤长度和腔光纤长度的优化,实现了10.3MHz的激光扫描速率和接近100%的有效占空比。
此外,该激光器设计通过偏振隔离技术有效抑制了穿过啁啾光纤布拉格光栅的光产生的不必要激光振荡。激光腔的输出功率测量为84mW,输出光谱的3-dB带宽为108.8nm,20dB带宽为114.7nm。激光的波数线性特性通过啁啾光纤布拉格光栅在频域中的线性啁啾色散实现,这对于超高速实时光学相干层析成像至关重要。

为了验证该技术的体内光学相干断层成像可行性,研究者构建了一种基于所提出激光器的超高速扫频源光学相干断层扫描系统。该系统通过扫描镜对和成像物镜实现了13µm的横向分辨率,并使用4GSa/s数据采集卡记录相干信号。系统的灵敏度计算为98dB,成像深度范围约为1.4毫米。尽管存在一些技术挑战,如相对强度噪声和色散失配,但通过精细化的分散管理和进一步研究电子短脉冲的抖动性能,这些问题有望得到解决。
研究者提出了一种基于啁啾光纤布拉格光栅的拉伸脉冲锁模扫描激光器的新方法,无需光缓冲、半导体光放大器调制和升压器放大。该激光器在1305nm的中心波长处提供84mW的输出功率,具有接近100%的有效占空比和109nm的3-dB带宽。此外,激光输出显示出良好的波数线性特性,并显示出2.3mm的−6-dB滚降深度。研究者还成功实现了使用该激光器对人体手掌进行的体内3D成像。欧光科技相信这种超高速扫描激光器有望极大地促进光学相干断层扫描技术在工业和生物医学应用中的应用。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
