【光学前沿】一种基于啁啾光纤布拉格光栅的拉伸脉冲锁模扫描激光器
在过去的十年中,针对超高速光学相干层析扫描模式和兆赫以上速度的扫描激光器的研究取得了显著进展。这些研究涵盖了多种技术,包括圆测距光学相干层析成像、光学计算光学相干层析摄影、时间拉伸扫描激光器、声光缺陷扫描激光器、傅立叶域锁模激光器、可调谐垂直腔表面发射激光器以及拉伸脉冲锁模扫描激光器。其中,拉伸脉冲锁模扫描激光器因其无需机械波长扫描滤波器,通过腔内色散介质实现脉冲拉伸和压缩的特性,显示出明显的优势。该设计在100nm的扫描带宽上实现了超过10MHz的速度,相较于传统的色散光纤卷轴,基于啁啾光纤布拉格光栅的设计在1060nm、1300nm和1550nm的中心波长下提供了更为紧凑和简化的设计。

尽管基于啁啾光纤布拉格光栅的激光器设计具有诸多优势,但其面临的技术挑战包括约30%的光透射通过啁啾光纤布拉格光栅,可能导致不必要的激光振荡。为解决这一问题,研究者提出了多种方法,如使用半导体光放大器的开/关调制与调制脉冲同步,以及将两个相同规格的啁啾光纤布拉格光栅结合到激光腔中。然而,这些方法均存在一定的局限性,如工作循环限制、激光噪声增加以及需要额外的腔增强器等。
为克服这些挑战,研究者提出了一种基于θ光纤环几何结构的扫频激光器设计。该设计采用O波段半导体光学放大器作为增益介质,中心波长为1300nm,3-dB光学带宽为87nm。通过80/20光纤耦合器将80%的强度耦合到腔外,光脉冲由40GHz铌酸锂Mach-Zehnder强度调制器产生,电子脉冲的脉冲宽度设置为125ps。该设计通过啁啾光纤布拉格光栅的双通光纤长度和腔光纤长度的优化,实现了10.3MHz的激光扫描速率和接近100%的有效占空比。
此外,该激光器设计通过偏振隔离技术有效抑制了穿过啁啾光纤布拉格光栅的光产生的不必要激光振荡。激光腔的输出功率测量为84mW,输出光谱的3-dB带宽为108.8nm,20dB带宽为114.7nm。激光的波数线性特性通过啁啾光纤布拉格光栅在频域中的线性啁啾色散实现,这对于超高速实时光学相干层析成像至关重要。

为了验证该技术的体内光学相干断层成像可行性,研究者构建了一种基于所提出激光器的超高速扫频源光学相干断层扫描系统。该系统通过扫描镜对和成像物镜实现了13µm的横向分辨率,并使用4GSa/s数据采集卡记录相干信号。系统的灵敏度计算为98dB,成像深度范围约为1.4毫米。尽管存在一些技术挑战,如相对强度噪声和色散失配,但通过精细化的分散管理和进一步研究电子短脉冲的抖动性能,这些问题有望得到解决。
研究者提出了一种基于啁啾光纤布拉格光栅的拉伸脉冲锁模扫描激光器的新方法,无需光缓冲、半导体光放大器调制和升压器放大。该激光器在1305nm的中心波长处提供84mW的输出功率,具有接近100%的有效占空比和109nm的3-dB带宽。此外,激光输出显示出良好的波数线性特性,并显示出2.3mm的−6-dB滚降深度。研究者还成功实现了使用该激光器对人体手掌进行的体内3D成像。欧光科技相信这种超高速扫描激光器有望极大地促进光学相干断层扫描技术在工业和生物医学应用中的应用。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
