多光子荧光成像技术及其在生物医学中的应用
多光子荧光成像技术是一种先进的显微成像方法,它通过利用多个光子同时与物质相互作用,产生荧光信号,从而实现高分辨率和高深度的生物组织成像。本文将详细介绍多光子荧光成像的原理、技术特点及其在生物医学领域的应用。
一、多光子荧光成像原理
多光子荧光成像的核心原理是基于非线性光学效应。在传统的单光子荧光成像中,荧光物质在吸收一个光子后会跃迁到激发态,随后通过发射一个能量较低的光子回到基态。而在多光子荧光成像中,荧光物质需要同时吸收两个或更多的光子才能达到激发态,这种过程称为多光子吸收。由于多光子吸收的概率与光强的平方成正比,因此这种效应在光强极高的焦点处最为显著,而在焦点外的区域则几乎不发生。
图1
图1(a)和(b)展示了单光子荧光和双光子荧光的效果对比。在单光子荧光中,荧光信号在整个激发光通路上都会产生,而在多光子荧光中,由于非线性的相互作用特征,荧光信号主要在焦点处产生。这种特性使得多光子显微成像具有本征的三维成像能力,亚微米量级成像分辨率和毫米量级成像深度,如图1(c)所示。
二、技术特点
多光子显微成像技术的主要特点包括:
高分辨率:由于多光子吸收主要发生在焦点处,因此可以实现亚微米级别的分辨率。
深层成像:多光子显微成像利用近红外波段的激发光,有效减少了组织散射的影响,从而减小了激发光在传输过程中的损耗,具有更强的穿透性,能够实现深层生物组织的成像。
低光毒性:由于激发光主要集中在焦点处,周围组织接收到的光强较低,因此对生物组织的损伤较小。
三、在生物医学中的应用
多光子荧光成像技术在生物医学领域有着广泛的应用,主要包括:
1.活体成像:多光子显微成像技术可以实现对活体生物组织的实时、非侵入性成像,有助于研究生物过程和疾病发展。
2.神经科学研究:通过多光子成像技术,可以观察神经元的结构和功能,研究神经网络的活动模式。
3.肿瘤研究:多光子成像技术可以用于肿瘤的早期诊断和治疗监测,通过观察肿瘤细胞的形态和代谢变化,评估治疗效果。
以上就是欧光科技为大家收集整理的“多光子荧光成像技术”的相关内容,如果大家还有更多光学激光设备的问题,欢迎留言和电话咨询。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15