多光子荧光成像技术及其在生物医学中的应用
多光子荧光成像技术是一种先进的显微成像方法,它通过利用多个光子同时与物质相互作用,产生荧光信号,从而实现高分辨率和高深度的生物组织成像。本文将详细介绍多光子荧光成像的原理、技术特点及其在生物医学领域的应用。
一、多光子荧光成像原理
多光子荧光成像的核心原理是基于非线性光学效应。在传统的单光子荧光成像中,荧光物质在吸收一个光子后会跃迁到激发态,随后通过发射一个能量较低的光子回到基态。而在多光子荧光成像中,荧光物质需要同时吸收两个或更多的光子才能达到激发态,这种过程称为多光子吸收。由于多光子吸收的概率与光强的平方成正比,因此这种效应在光强极高的焦点处最为显著,而在焦点外的区域则几乎不发生。

图1
图1(a)和(b)展示了单光子荧光和双光子荧光的效果对比。在单光子荧光中,荧光信号在整个激发光通路上都会产生,而在多光子荧光中,由于非线性的相互作用特征,荧光信号主要在焦点处产生。这种特性使得多光子显微成像具有本征的三维成像能力,亚微米量级成像分辨率和毫米量级成像深度,如图1(c)所示。
二、技术特点
多光子显微成像技术的主要特点包括:
高分辨率:由于多光子吸收主要发生在焦点处,因此可以实现亚微米级别的分辨率。
深层成像:多光子显微成像利用近红外波段的激发光,有效减少了组织散射的影响,从而减小了激发光在传输过程中的损耗,具有更强的穿透性,能够实现深层生物组织的成像。
低光毒性:由于激发光主要集中在焦点处,周围组织接收到的光强较低,因此对生物组织的损伤较小。
三、在生物医学中的应用
多光子荧光成像技术在生物医学领域有着广泛的应用,主要包括:
1.活体成像:多光子显微成像技术可以实现对活体生物组织的实时、非侵入性成像,有助于研究生物过程和疾病发展。
2.神经科学研究:通过多光子成像技术,可以观察神经元的结构和功能,研究神经网络的活动模式。
3.肿瘤研究:多光子成像技术可以用于肿瘤的早期诊断和治疗监测,通过观察肿瘤细胞的形态和代谢变化,评估治疗效果。
以上就是欧光科技为大家收集整理的“多光子荧光成像技术”的相关内容,如果大家还有更多光学激光设备的问题,欢迎留言和电话咨询。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
