激光打标技术原理及其应用
激光打标技术是一种利用高能量密度的激光束对材料表面进行加工的激光加工技术,从而在材料表面形成永久性标记的技术。这种技术广泛应用于工业制造、艺术品制作、医疗器械等领域,因其高精度、无接触、环保等优点而受到青睐。

一、激光打标的基本原理
激光打标的基本原理是利用激光器产生的高能量激光束,通过聚焦透镜聚焦到非常小的光斑上,使材料表面局部瞬间加热至高温,从而使材料表面发生物理或化学变化,形成所需的标记。这种变化可以是材料的蒸发、烧蚀、氧化、变色等。
二、激光打标的应用
1.激光雕刻:激光雕刻是激光打标技术中最常见的应用之一。通过控制激光束的移动和能量,可以在材料表面雕刻出文字、图案、条形码等。激光雕刻的深度通常在100μm以下,但在某些特殊应用中,深度可能会更深。
2.去除表面层:激光打标技术还可以用于去除材料表面的氧化层或油漆涂层。通过激光束的烧蚀作用,可以精确地去除表面层,从而改变材料的外观。
3.表面修改:激光打标技术还可以用于修改材料表面的物理和化学性质。例如,金属表面经过短时间加热后会形成一层薄薄的氧化层,从而呈现出彩色的外观。此外,许多聚合物在激光辐射下会因碳化而变黑,或者在激光加热后会膨胀,呈现出更浅的外观。
三、激光打标技术的优势
1.高精度:激光打标技术可以实现非常精细的标记,最小光斑直径可以达到微米级别,因此可以用于高精度的标记需求。
2.无接触:激光打标是一种非接触式加工方法,不会对材料表面造成机械应力,因此适用于各种脆弱或易变形的材料。
3.环保:激光打标过程中不会产生有害物质,是一种环保的加工方法。
4.永久性:激光打标形成的标记具有永久性,不易磨损和褪色,适用于需要长期保存的标记。
四、激光打标技术的挑战
尽管激光打标技术具有许多优点,但在实际应用中也面临一些挑战。例如,不同材料的激光打标参数需要精确调整,以确保标记的质量和效果。此外,激光打标设备的成本相对较高,对于一些小型企业来说可能是一个负担。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
