激光打标技术原理及其应用
激光打标技术是一种利用高能量密度的激光束对材料表面进行加工的激光加工技术,从而在材料表面形成永久性标记的技术。这种技术广泛应用于工业制造、艺术品制作、医疗器械等领域,因其高精度、无接触、环保等优点而受到青睐。
一、激光打标的基本原理
激光打标的基本原理是利用激光器产生的高能量激光束,通过聚焦透镜聚焦到非常小的光斑上,使材料表面局部瞬间加热至高温,从而使材料表面发生物理或化学变化,形成所需的标记。这种变化可以是材料的蒸发、烧蚀、氧化、变色等。
二、激光打标的应用
1.激光雕刻:激光雕刻是激光打标技术中最常见的应用之一。通过控制激光束的移动和能量,可以在材料表面雕刻出文字、图案、条形码等。激光雕刻的深度通常在100μm以下,但在某些特殊应用中,深度可能会更深。
2.去除表面层:激光打标技术还可以用于去除材料表面的氧化层或油漆涂层。通过激光束的烧蚀作用,可以精确地去除表面层,从而改变材料的外观。
3.表面修改:激光打标技术还可以用于修改材料表面的物理和化学性质。例如,金属表面经过短时间加热后会形成一层薄薄的氧化层,从而呈现出彩色的外观。此外,许多聚合物在激光辐射下会因碳化而变黑,或者在激光加热后会膨胀,呈现出更浅的外观。
三、激光打标技术的优势
1.高精度:激光打标技术可以实现非常精细的标记,最小光斑直径可以达到微米级别,因此可以用于高精度的标记需求。
2.无接触:激光打标是一种非接触式加工方法,不会对材料表面造成机械应力,因此适用于各种脆弱或易变形的材料。
3.环保:激光打标过程中不会产生有害物质,是一种环保的加工方法。
4.永久性:激光打标形成的标记具有永久性,不易磨损和褪色,适用于需要长期保存的标记。
四、激光打标技术的挑战
尽管激光打标技术具有许多优点,但在实际应用中也面临一些挑战。例如,不同材料的激光打标参数需要精确调整,以确保标记的质量和效果。此外,激光打标设备的成本相对较高,对于一些小型企业来说可能是一个负担。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30