【光学前沿资讯】全息光镊进展:光无自旋角动量下的微粒可控自旋机制研究

       光具有角动量属性,其中圆偏振或椭圆偏振光束携带自旋角动量(SAM),而具有螺旋相位波前的光束则携带轨道角动量(OAM)。在光与微粒相互作用的过程中,角动量的传递能够产生光力矩,从而驱动微粒进行旋转运动。具体而言,光自旋角动量的传递促使微粒围绕自转轴进行自旋运动,而轨道角动量的传递则使微粒围绕光轴进行旋转运动。这种光致旋转现象为微观粒子的操控提供了新的维度,并已被广泛应用于光学传感、光微流变学、微机器人等领域。


    近期,中国科学技术大学光学与光学工程系龚雷副教授与新加坡国立大学仇成伟教授合作,揭示了一种新的光致微粒自旋物理机制。研究发现,即使入射光束不携带自旋角动量,经过强聚焦后也能产生可控的自旋力矩。该机制利用光学霍尔效应,通过调控聚焦场的自旋-轨道相互作用,实现了聚焦场自旋角动量的局域传递,进而驱动被捕获的微粒产生连续的自旋运动。

 

光无自旋角动量下的微粒可控自旋机制研究


    此项研究成果已于6月21日以“ControllableMicroparticleSpinningviaLightwithoutSpinAngularMomentum”为题,在线发表于国际知名学术期刊《物理评论快报》。研究中,由于自旋-轨道相互作用,线偏振或径向偏振光束的两个自旋分量在紧聚焦条件下将产生横向分离,形成一种光学自旋霍尔效应。然而,这种自旋劈裂的间距仅为亚波长量级,在与微粒相互作用时无法有效传递自旋角动量,不能驱动微粒自旋。研究团队巧妙地运用光学轨道霍尔效应来调控聚焦场自旋角动量密度分布,通过在入射径向偏振光场引入轨道角动量叠加态,有效调控两个自旋分量的径向间距,实现了聚焦场自旋角动量对微观粒子的局域传递,最终实现了粒子的可控自转操控。


    在此基础上,研究团队进一步开发了全息光镊的并行操控功能,通过调控入射光场波前,实现了多粒子同时捕获、独立平移和旋转操控。该研究不仅揭示了轨道角动量调控聚焦光场自旋的原理,还为光学自旋-轨道相互作用导致的力学效应研究提供了新的思路。


    中国科学技术大学光学与光学工程系博士生吴一京为该论文的第一作者,龚雷副教授和仇成伟教授为通讯作者。此项研究得到了国家自然科学基金和安徽省自然科学基金的资助。

创建时间:2024-06-25 10:47
浏览量:0

▍最新资讯