光学系统优化:分析杂散光的影响
杂散光会影响光学系统性能。通过深入了解和正确工具,光学工程师可以预测和补偿其影响,提高质量。
电气工程师熟悉各种噪声对系统的影响,但光学工程师常忽视光学噪声的影响,导致性能不佳。这在天文观测、微光信号检测和医学图像中尤为重要。光学工程师可能不了解杂散光的传播或光学表面和挡板的散射。幸运的是,杂散光分析领域成熟,软件功能强大,对散射过程的理解不断增长。
衍射是一种杂散光机制,产生的能量分布超出几何预期。鬼像是入射光被反射和透射后产生的镜面效应。未经后抛光的金刚石车削表面会产生衍射光栅效应。研磨和抛光过程留下的微粗糙度会散射光线。灰尘也会散射光线,影响光学设备。油漆和表面处理会产生不同的散射光分布。所有结构都会根据温度和发射率辐射热能,影响长波红外成像设备的性能。
杂散光分析使用点源透射率(PST)等指标来描述光学系统的杂散光特性。PST是探测器上能量与入射能量的比值。杂散光百分比是光噪声功率与信号功率之比。鬼像计算用于识别敏感表面。热自发射通过几何构型因子(GCF)计算。
挡板、光阑和叶片用于控制不需要的光。Lyot光阑用于阻挡瞳孔边缘的衍射效应。含有叶片的挡板管用于遮蔽光学系统,控制散射事件数量。
现代杂散光分析软件经过多年发展,功能强大。软件定义和编辑复杂几何形状,描述镜面反射和散射特性。光线分割和重要性抽样用于计算杂散光。杂散光计算包括定义光源并进行非顺序传播。现代软件提供详细的杂散光传播信息,帮助分析人员优化系统。
在光学系统设计中,杂散光分析师努力使每个光子都有用。通过正确定位叶片或保持内表面干净,可以显著提高系统性能。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30