什么是激光诱导击穿光谱(LIBS)?激光诱导击穿光谱技术解析
激光诱导击穿光谱(Laser-inducedbreakdownspectroscopy,LIBS)是一种先进的分析技术,它利用激光诱导的等离子体来分析材料中的元素组成。这种技术因其非侵入性、非破坏性以及无需复杂样品制备的特点,在多个领域中得到了广泛的应用。
LIBS技术的核心在于使用高能量的激光脉冲聚焦于样品表面,产生等离子体。这一过程首先由Nd:YAG激光器在1064nm波长处产生短脉冲激光,该激光聚焦后,其能量足以加热并蒸发样品表面的一小部分材料。随后,蒸发和电离过程形成等离子体,其中包含被激发的原子和离子。这些激发态的原子和离子在返回基态时会发射出特定波长的光,这些光被称为二次光。
二次光通过光谱仪进行收集和分辨,光谱仪能够将这些光分解成其组成波长,形成光谱。每种化学元素都有其独特的光谱特征,这些特征在光谱中表现为特定的波峰。通过分析这些波峰,可以确定样品中存在的元素种类及其浓度。这一过程快速且灵敏,使得LIBS技术能够在实时监测和远程分析中发挥重要作用。
LIBS技术的应用非常广泛,从基础科学研究到工业应用,再到环境监测和法医学等领域都有其身影。在行星探索中,LIBS技术被用于分析外星岩石和土壤的成分,帮助科学家了解其他星球的化学组成。在工业领域,LIBS技术可以用于在线监测金属合金的成分,确保产品质量。在环境监测中,LIBS技术可以快速检测水体或土壤中的重金属污染。在法医学中,LIBS技术则可以用于分析微量物证,如纤维、油漆碎片等,为案件提供关键证据。
激光诱导击穿光谱(LIBS)技术是一种高效、快速且多功能的分析工具。其非侵入性和实时分析能力使其在多个光学检测设备领域中都显示出巨大的应用潜力。随着技术的不断进步,LIBS技术在未来有望在更多领域发挥其独特的优势。
-
超短脉冲激光加工系统:精密制造领域的效率突破与技术革新
随着对加工精度、材料适应性的要求不断提升,超短脉冲(Ultra-ShortPulse,USP)激光器凭借其独特的脉冲特性——脉冲持续时间可压缩至皮秒甚至飞秒级别,能够有效抑制热影响区(Heat-AffectedZone,HAZ)、降低材料损伤,已成为微加工领域的关键技术手段。近十年来,USP激光器的加工稳定性与操作灵活性持续优化,加工质量已满足诸多高端应用场景需求,但在工业应用场景中,“效率瓶颈”始终是制约其规模化推广的核心问题。为突破这一限制,研究人员不仅从激光器本体出发(如提升脉冲能量、提高脉冲重复率),更在激光能量管理领域开展深度研究,通过创新的光束控制、整形与分发技术,为USP激光加工技术的工业化应用注入新动能。
2025-09-16
-
激光器相位调制技术的原理、实现与应用解析
从超高速相干光通信到精密光学传感,再到量子计算与原子物理研究,激光的“相位”特性正成为承载信息、实现精准控制的核心载体。不同于直接改变光强的强度调制,激光相位调制(PhaseModulation,PM)通过精准调控激光相位的动态变化,实现了更高效、抗干扰能力更强的信息传输与信号处理,已成为高性能光电子系统的关键支撑技术
2025-09-16
-
为什么必须重视显微镜物镜MTF测量?
在生命科学研究的细胞观察、材料科学的微观结构分析、医疗诊断的病理切片研判中,显微镜物镜是决定“看得清、看得准”的核心部件——其成像分辨率、视场均匀性、畸变控制直接影响实验结论与应用效果。而如何科学量化这一核心性能?光学传递函数(MTF)作为国际公认的成像质量“金标准”,正是显微镜物镜性能检测的关键技术;而欧光科技代理的德国TRIOPTICSImageMaster系列MTF测量仪,更成为赋能显微镜物镜研发与量产的“性能校准专家”。
2025-09-15
-
反射镜技术的原理、分类、结构及应用特性解析
反射镜作为利用光的反射特性调控光路的关键光学元件,广泛应用于日常生活、工业制造及前沿科研领域——从民用梳妆镜、汽车后视镜,到工业激光设备、天文观测系统,其功能实现均以精准引导光线传播为核心目标。本文基于光的反射定律,系统梳理反射镜的分类体系,拆解其核心组成结构,全面阐述该类光学元件的技术特性与应用适配逻辑。
2025-09-15