什么是激光诱导击穿光谱(LIBS)?激光诱导击穿光谱技术解析
激光诱导击穿光谱(Laser-inducedbreakdownspectroscopy,LIBS)是一种先进的分析技术,它利用激光诱导的等离子体来分析材料中的元素组成。这种技术因其非侵入性、非破坏性以及无需复杂样品制备的特点,在多个领域中得到了广泛的应用。

LIBS技术的核心在于使用高能量的激光脉冲聚焦于样品表面,产生等离子体。这一过程首先由Nd:YAG激光器在1064nm波长处产生短脉冲激光,该激光聚焦后,其能量足以加热并蒸发样品表面的一小部分材料。随后,蒸发和电离过程形成等离子体,其中包含被激发的原子和离子。这些激发态的原子和离子在返回基态时会发射出特定波长的光,这些光被称为二次光。
二次光通过光谱仪进行收集和分辨,光谱仪能够将这些光分解成其组成波长,形成光谱。每种化学元素都有其独特的光谱特征,这些特征在光谱中表现为特定的波峰。通过分析这些波峰,可以确定样品中存在的元素种类及其浓度。这一过程快速且灵敏,使得LIBS技术能够在实时监测和远程分析中发挥重要作用。
LIBS技术的应用非常广泛,从基础科学研究到工业应用,再到环境监测和法医学等领域都有其身影。在行星探索中,LIBS技术被用于分析外星岩石和土壤的成分,帮助科学家了解其他星球的化学组成。在工业领域,LIBS技术可以用于在线监测金属合金的成分,确保产品质量。在环境监测中,LIBS技术可以快速检测水体或土壤中的重金属污染。在法医学中,LIBS技术则可以用于分析微量物证,如纤维、油漆碎片等,为案件提供关键证据。
激光诱导击穿光谱(LIBS)技术是一种高效、快速且多功能的分析工具。其非侵入性和实时分析能力使其在多个光学检测设备领域中都显示出巨大的应用潜力。随着技术的不断进步,LIBS技术在未来有望在更多领域发挥其独特的优势。
-
镜头色差成因及校正技术解析:ED镜片与APO复消色差系统
在光学成像领域,色差是影响镜头成像质量的核心问题之一。尤其是在长焦拍摄、广角边缘成像或逆光、大光比等复杂场景下,画面中出现的紫边、绿边等色边现象,以及颜色浸润、边缘模糊等问题,本质上均为色差(ChromaticAberration,简称CA)导致的成像偏差。本文将系统解析色差的物理本质、产生机制,深入探讨普通镜片组合、ED镜片及APO复消色差三种校正方案的技术原理与优劣特性,并澄清行业内关于APO镜头与锐度的认知误区。
2025-12-15
-
无干涉机制赋能宽带片上角动量复用:150纳米带宽芯片技术实现
在信息技术向超高容量、微型化方向持续演进的当下,光的角动量复用技术凭借其物理正交特性,已成为破解数据传输与存储领域性能瓶颈的关键技术路径。然而,传统基于干涉法的探测方案受限于器件体积与带宽特性,难以满足芯片级集成应用的核心需求。近日,一项发表于《Science》的研究提出了无干涉角动量复用创新方案,通过设计新型纳米环孔径结构,成功实现150纳米带宽的片上并行复用,为微型化纳米光子器件的研发与应用开辟了全新路径。
2025-12-15
-
多组间隔镜片镜头的定心装配与空气间隔控制技术
在精密光学镜头(如安防监控镜头、工业检测镜头、高端成像镜头等)中,多组带空气间隔的镜片是实现高清成像的核心结构。镜片光轴的同轴度与空气间隔的精准度直接决定镜头的分辨率、像差校正效果等关键指标——若光轴偏移,会导致成像模糊、畸变;若空气间隔偏离设计值,则会破坏光学系统的共轭关系,影响画质还原。针对这类镜头,数控定心车削技术结合闭环反馈装配体系,已成为实现高精度定心装配与空气间隔控制的主流方案。
2025-12-15
-
放大的自发辐射(ASE)与受激辐射的核心机制及差异解析
在量子电子学与激光物理领域,光辐射机制的特性直接决定了光学器件的性能与应用场景。放大的自发辐射(Amplified Spontaneous Emission,ASE)作为介于自发辐射与受激辐射之间的关键光放大过程,其物理本质与两类基础辐射机制的差异,是理解光电子技术原理的核心前提。本文基于量子光学基本理论,系统梳理三者的物理机制、形成过程及核心差异,为相关领域的理论研究与技术应用提供参考。
2025-12-15
