【光学前沿】探索超构光子学与人工智能相结合的下一代研究趋势
《固体与材料科学当前观点》杂志上,一项由浦项科技大学(POSTECH)的研究团队发表的研究论文,详细阐述了超构光子学与人工智能结合的研究趋势。该论文指出,超透镜技术的进步将传统透镜的厚度缩减至极薄,同时保持了对光特性的精确控制。此外,人工智能已被学术界用作分析工具,以揭示输入与输出数据之间的关联。
研究团队在论文中概述了人工智能在超构光子学研究中的三大趋势。首先,以往基于超材料的设备开发模拟过程耗时较长,但人工智能技术的引入使得研究人员能迅速预测光学特性,显著提高了效率。通过将光学特性数据输入人工智能系统,研究人员能够设计出符合特定需求的光学设备器件。
其次,光学神经网络作为一个新兴的光学计算机技术领域,旨在利用超材料将信息转换为光,以光速推动人工智能的发展。POSTECH的研究小组,由机械工程系、化学工程系和电子工程系的JunsukRho教授领导,以及机械工程系的博士候选人SeokhoLee和CherryPark,通过将光神经网络分为编码器和解码器,为人工智能与超构光子学研究的协同发展提供了新的视角。
最后,研究小组强调了基于超材料的超级传感器作为下一代研究趋势的重要性。这些传感器能够将测量数据编码成光并放大,结合人工智能后可实现精确且快速的数据分析。超级传感器预计将在医疗诊断、环境监测、安全保障等多个领域发挥重要作用,推动精细数据检测和分析的发展。
JunsukRho教授表示:“本文全面介绍了超构光子学的研究历程,包括过去的成就、当前的进展以及未来的趋势。我们期待通过结合人工智能和超材料的独特属性,推动更多创新性和创造性的研究。”
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30