【光学前沿】美国普渡大学发现用于光谱偏振热成像的旋转超光学表面叠层
在长波红外(LWIR)光谱范围内,传统的热像仪通常依赖于笨重的滤光片轮或精密干涉仪来解析探测到的热辐射的光谱成分。然而,滤光片轮的光谱分辨率有限,而干涉仪则面临视场狭窄和对环境条件敏感的问题,这些因素限制了它们在实际应用中的效能。
为克服这些限制,美国普渡大学的研究团队将研究方向转向了新兴的超光学领域。该领域专注于利用可工程化的亚波长纳米结构,即超表面,来操控光线。通过结合堆叠超光学表面器件与压缩传感和字典学习算法,该团队成功开发了一种紧凑、高效且性能卓越的光谱偏振成像系统,命名为“SpinningMetaCam”。这一创新技术有望在多个领域中提供更为精确和可靠的热成像解决方案。
一、超光学表面紧(凑型热成像光谱仪的关键)
SpinningMetaCam的关键创新在于其巧妙地使用了超表面——超薄结构表面,以复杂和定制的方式操纵光线。
研究人员设计了三个旋转色散超表面,并将其叠放在一起,每个超表面都旨在展示对优化光谱偏振成像性能至关重要的特定特性。
第一组超表面能够有效地分解热辐射的波长,这是光谱分析中至关重要的一步。第二组通过确保高传输和低自发射来增强信噪比(SNR),从而保持数据质量。第三组为成像系统提供宽视场,克服了传统基于干涉仪的光谱成像仪的局限性。
二、旋转机制(光谱和偏振的分解)
SpinningMetaCam独特地利用超表面的旋转和宽带线性偏振器来实现入射热辐射的光谱和极化分解。
该系统通过将超表面和偏振片旋转到不同角度,生成可调谐透射光谱,对偏振和光谱通道上的入射辐射进行采样。这是通过超表面将不同波长的辐射旋转到不同的偏振方向的能力来实现的,从而有效地分离了热辐射的光谱和偏振分量。
然后使用先进的计算成像算法处理采集的数据,特别是压缩传感技术与字典学习算法。这些算法能够从有限的测量次数中准确重建未知光谱,即使在存在噪声和测量误差的情况下也能确保稳定可靠的光谱重建。
研究人员通过对具有不同微光栅结构的定制“PURDUE”目标进行成像来证明该系统的能力。重建的光谱准确地捕捉了每个字母独特的光谱极化特征,揭示了超出传统热像仪能力的复杂细节。
三、研究成果(前所未有的性能与功能)
3.1光谱分辨率
对于10μm以上的波长,该系统的半峰全宽(FWHM)光谱分辨率为0.6μm,能够检测窄至0.1μmFWHM的峰,这对于各种成像应用中的详细表征至关重要。**
3.2极化信息
SpinningMetaCam捕获了极化信息,包括线性偏振角(AoLP)和线性偏振度(DOLP),形成了四维空间-光谱-偏振数据镶嵌,增强了其在各种应用中的实用性。
3.2材料分类
在材料分类测试中,SpinningMetaCam的性能优于传统的全色热成像,精度提高了三倍,平均精度(mAP)为0.834,令人印象深刻。
3.3宽视场
与基于干涉仪的光谱成像仪的有限视场不同,旋转MetaCam提供20.5°的宽视场,将其多功能性扩展到需要更大成像区域的场景。
该团队所提出的基于旋转超表面的光谱偏振热成像技术代表了热成像的重大进步。该系统展现了红外光谱分辨和极化特征的能力,也为无损表征和科学探索提供了机会,特别是在各向异性热传导和定向传热方面。这对于材料科学、环境监测和遥感行业来说意义重大,并可以为这些领域提供新的见解和更明智的决策。
研究的目标是在提高频谱分辨率、传输效率和处理速度的同时实现视频捕获。研究团队还计划改进超表面设计,以实现先进的光操纵,使用改进的材料将该方法扩展到室温成像,并采用抗反射涂层等技术。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30