定心仪的工作原理是什么?定心仪器的三种分类
在精密光学测量领域,定心仪是一种关键设备,用于检测和校正光学元件的中心偏差。定心仪根据其工作原理主要分为反射式、透射式和双光路三种类型。

一、反射式定心仪
反射式定心仪利用回转轴系作为测量基准,通过自准直仪与前置镜的配合来实现镜片的定心。在这种系统中,光源发出的光通过前置镜聚焦在其焦面上,形成分划板的像。通过调整定心仪的轴向位置,使分划板的像与被测表面的球心重合。当主轴旋转时,通过被测镜片表面反射的光束的像点运动轨迹被测量,从而计算出中心偏差。反射式定心仪的灵敏度较高,因为反射光线旋转角度是表面法线旋转角度的两倍。然而,这种类型的定心仪使用白光光源,光强较弱,且可测试的面数有限。此外,需要根据待测透镜的F数切换物镜,这可能会引入系统误差,且不能测量透镜的每个面。
二、透射式定心仪
透射式定心仪的测量原理是使一束光通过被测镜片,同时旋转主轴,利用传感器测量光束透过镜片后像点的运动轨迹来分析偏心量。这种测量方式可以对整个透镜进行测量,但其局限性在于只能进行整体测量,无法针对透镜的每个面进行详细分析。
三、双光路定心仪
双光路定心仪通过分别测量镜片上下表面的曲率中心,再通过软件计算出镜片的光轴偏差。这种系统适用于单透镜的测量,但对于复杂镜头系统的测量则存在局限性。双光路校准可能会导致系统误差,影响装调精度。
综上所述,不同类型的定心仪各有优缺点,选择合适的定心仪类型需要根据具体的应用需求和测量精度要求。反射式定心仪虽然灵敏度高,但光强和可测试面数有限;双光路定心仪适用于单透镜测量,但不适用于复杂系统;透射式定心仪可以进行整体测量,但无法进行面部分析。因此,在选择定心仪时,需要综合考虑其性能、适用范围和可能的系统误差,以确保测量结果的准确性和可靠性。
-
无干涉机制赋能宽带片上角动量复用:150纳米带宽芯片技术实现
在信息技术向超高容量、微型化方向持续演进的当下,光的角动量复用技术凭借其物理正交特性,已成为破解数据传输与存储领域性能瓶颈的关键技术路径。然而,传统基于干涉法的探测方案受限于器件体积与带宽特性,难以满足芯片级集成应用的核心需求。近日,一项发表于《Science》的研究提出了无干涉角动量复用创新方案,通过设计新型纳米环孔径结构,成功实现150纳米带宽的片上并行复用,为微型化纳米光子器件的研发与应用开辟了全新路径。
2025-12-15
-
多组间隔镜片镜头的定心装配与空气间隔控制技术
在精密光学镜头(如安防监控镜头、工业检测镜头、高端成像镜头等)中,多组带空气间隔的镜片是实现高清成像的核心结构。镜片光轴的同轴度与空气间隔的精准度直接决定镜头的分辨率、像差校正效果等关键指标——若光轴偏移,会导致成像模糊、畸变;若空气间隔偏离设计值,则会破坏光学系统的共轭关系,影响画质还原。针对这类镜头,数控定心车削技术结合闭环反馈装配体系,已成为实现高精度定心装配与空气间隔控制的主流方案。
2025-12-15
-
放大的自发辐射(ASE)与受激辐射的核心机制及差异解析
在量子电子学与激光物理领域,光辐射机制的特性直接决定了光学器件的性能与应用场景。放大的自发辐射(Amplified Spontaneous Emission,ASE)作为介于自发辐射与受激辐射之间的关键光放大过程,其物理本质与两类基础辐射机制的差异,是理解光电子技术原理的核心前提。本文基于量子光学基本理论,系统梳理三者的物理机制、形成过程及核心差异,为相关领域的理论研究与技术应用提供参考。
2025-12-15
-
【前沿资讯】无引导星自适应光学技术(CAO)的原理创新、技术突破与应用前景
北京师范大学与澳门大学的研究团队联合研发了相关自适应光学(Correlative Adaptive Optics,CAO)技术——一种基于对称性破缺原理的无引导星、无标记波前校正方案。该研究成果已正式发表于光学期刊领域权威期刊《APLPhotonics》(中科院1区,影响因子5.4),为自适应光学技术的场景拓展提供了全新路径。
2025-12-12
