【光学前沿】物理学家研制出用于6G的光学元件
来自Skoltech、MIPT和ITMO的物理学家组成的联合团队开发出一种光学元件,有助于管理太赫兹光束的特性并将其分成几个通道。这种新装置可用作太赫兹涡旋束的调制器和发生器,用于医疗、6G通信和显微镜检查。论文发表在《先进光学材料》杂志上。
快速发展的太赫兹技术涉及以介于微波和红外频段之间的约1万亿赫兹(或1太赫兹)的频率传输信号。它将用于高速6G通信和医学领域,作为X射线的替代品。目前,研究人员正致力于制造适应这些频率的光学元件,以及可用于传输此类信号的发生器。

螺旋带板制造工艺
来自MIPT和Skoltech的物理学家联合开发了一种基于碳纳米管的变焦菲涅尔区板,能够聚焦太赫兹辐射,并通过拉伸调整板的特性。在近年的研究中,研究人员与ITMO联手合成了一种可在太赫兹范围内工作的光学元件。
MIPT纳米光学和等离子体实验室高级研究员MariaBurdanova说:“我们与Skoltech和ITMO一起赢得了光子学联合研究项目Clover竞赛,并决定创建一个螺旋区板。ITMO对板的形状和性能进行了设计计算,Skoltech合成了纳米材料并制造了具有预期几何形状的板,MIPT利用俄罗斯科学院普通物理研究所的设施对板进行了实验测试。”
新板由碳纳米管薄膜制成,能扭曲穿过它的太赫兹光束的波面。在实验中,研究小组将两块板并排放置,然后相对旋转,从而改变了辐射强度的分布,并将光束分成几个不同辐射强度的区域(模式),每个模式都可用作信息传输通道。
研究小组利用太赫兹成像法对平板的特性进行了实验测试。将一个强大的辐射源对准平板,使用亚波长孔径和基于戈莱单元的二维光栅扫描系统检测电磁场强度的分布。研究人员利用得到的图像来确保平板产生扭曲光束,并检查强度模式。

调制器焦点附近光束强度和相位的空间分布示例
这种新型调制器适用于各种需要聚焦和重新定位光束的应用,包括太赫兹显微镜和生物医学。
由于缺乏统一的仪器和设备标准,进入太赫兹波段是一项重要挑战。同时,它也为竞争性研究和创造独创性解决方案打开了大门。凸显碳纳米管前景的关键特征之一是,可以通过原子、超分子和微米级别的响应,创造出具有不同效应微调特性的多功能设备。
SkoltechPhotonics公司副教授DmitryKrasnikov评论道:“我们的联合团队首次成功引入了一种额外的效应:不同纳米管图案之间的相互作用。这为未来的设备铺平了道路。令人惊讶的是,这项研究从开始的想法到概念验证只用了不到九个月的时间,这是我职业生涯中迄今为止超快的项目之一。如果没有ITMO、MIPT和Skoltech的共同努力,这一突破是不可能实现的。这凸显了种子计划在加强俄罗斯国内研究团队合作方面的潜力。”
Burdanova补充道:“我们的三叶草项目今年已经延期。我们计划在相同螺旋区板的基础上制造太赫兹自适应变焦设备,但要增强操纵能力。我们还希望为我们已有的设备申请专利。”
2023年,Skoltech、MIPT和ITMO大学发起了"四叶草计划",以支持合作研究,促进国内三所顶尖大学在光子学领域的合作。四叶草计划面向刚刚开始科学生涯的学生、研究人员和博士后,让他们参与前沿研究项目,促进顶尖研究团队之间的流动。
其长期目标是在俄罗斯启动光子学及相关领域的大型项目。Clover竞赛汇聚了生物光子学、先进光子材料、拓扑光子学、光学计算以及激光加工设备物理和技术领域的顶尖研究人员。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
