什么是光学折射系统?光学折射系统原理分析
光学折射系统是一种利用透镜或反射镜的折射和反射原理来操纵光线的光学装置。这类系统通过改变光线的传播方向和聚焦特性,实现对光束的控制和成像。伽利略望远镜作为一种典型的光学折射系统,其结构由一个正透镜(物镜)和一个负透镜(目镜)组成,能够实现对远处物体的放大观察。
伽利略望远镜的工作原理基于透镜的光焦度(φ),即透镜对光线的折射能力。系统的光学方程式可表示为:
φL1+φL2–φL1φL2D=0
其中φL1—透镜1(正透镜)的光焦度,φL2—透镜2(负透镜)的光焦度,D—镜片间隔。如果从负透镜射出的光线在工作温度范围内保持准直,其被认为是被动无热化的设计。在一些要求更高的应用中,可以指定在温度范围内放大倍率变化量作为条件进行进一步约束。

望远镜中透镜光学材料和镜筒的CTE和TCR如下表所示。在本例中,准直的近轴变化需要控制在18μrad以内(在衍射极限范围内,四分之一波长),–10°C和50°C下的像差曲线如下图。


本例选择的外壳材料是殷钢,与铝或其他金属相比,这种材料具有非常低的膨胀系数。正物镜为球面透镜,由硅制成,具有较小的膨胀系数和中等大的正折射热系数,随着温度的升高,镜头会变得更加正;负锗透镜具有较小的膨胀系数和较大的正折射热系数,随着温度的升高,负透镜变得更加负。因此,当两者按配合使用并安装在殷钢的镜筒中时,它们的尺寸和材料变化会相互抵消,从而使出射光束保持准直状态。此外,放大倍率的变化仅为0.3%左右。
通过选择与制造光学零件(反射镜)材料相同的镜筒材料,选择光学零件特性来补偿镜筒材料的热效应,以及选择镜筒材料来补偿光学零件的光学特性,可以实现光学设备的被动无热化。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
