什么是光学反射系统?反射系统的原理
反射系统,如其名所示,完全由反射元件构成,其中卡塞格林和格里高利镜像系统是经典的代表。以卡塞格林光学系统为例,其满足以下公式:
φp+φs-φpφsL=φc
在此公式中,φp代表主镜的光焦度,φs代表次镜的光焦度,L代表主镜与次镜之间的距离,而φc则代表卡塞格林镜系统的光焦度。在经典的卡塞格林系统中,主镜通常采用抛物面设计,次镜则为双曲面。下图展示了一个典型的全铝卡塞格林系统。

全铝卡塞格林系统的焦距(EFL)与线性热膨胀系数呈正比关系。这种系统具有被动无热特性,能够在不同温度下保持对焦。当温度发生变化时,全铝卡塞格林系统的参数,如曲率半径、主次镜间距以及空气折射率,也会相应调整。
在此例中,主镜和次镜的膨胀系数与镜筒材料一致(均为铝合金),确保系统在所需工作温度范围内保持聚焦。例如,随着温度的升高,主镜和次镜的光焦度会减小,同时外壳材料会根据光焦度的变化成比例地膨胀,从而使图像保持对焦。这是针对光学系统在任何温度变化下进行被动热化的较为简便方法。

然而,若卡塞格林系统的主镜、次镜和镜筒采用不同材料,无热化问题将变得更为复杂。尽管如此,其基本原理保持不变:主镜光焦度的变化速率与次镜光焦度不同,且必须选择合适的镜筒材料以确保图像对焦。在极端温度条件下使用时,这种被动无热化的反射系统除了可能出现散焦外,还可能产生其他像差。此外,反射系统的离轴性能有限,不适用于轴外视场较大的情况。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
