什么是光学反射系统?反射系统的原理
反射系统,如其名所示,完全由反射元件构成,其中卡塞格林和格里高利镜像系统是经典的代表。以卡塞格林光学系统为例,其满足以下公式:
φp+φs-φpφsL=φc
在此公式中,φp代表主镜的光焦度,φs代表次镜的光焦度,L代表主镜与次镜之间的距离,而φc则代表卡塞格林镜系统的光焦度。在经典的卡塞格林系统中,主镜通常采用抛物面设计,次镜则为双曲面。下图展示了一个典型的全铝卡塞格林系统。
全铝卡塞格林系统的焦距(EFL)与线性热膨胀系数呈正比关系。这种系统具有被动无热特性,能够在不同温度下保持对焦。当温度发生变化时,全铝卡塞格林系统的参数,如曲率半径、主次镜间距以及空气折射率,也会相应调整。
在此例中,主镜和次镜的膨胀系数与镜筒材料一致(均为铝合金),确保系统在所需工作温度范围内保持聚焦。例如,随着温度的升高,主镜和次镜的光焦度会减小,同时外壳材料会根据光焦度的变化成比例地膨胀,从而使图像保持对焦。这是针对光学系统在任何温度变化下进行被动热化的较为简便方法。
然而,若卡塞格林系统的主镜、次镜和镜筒采用不同材料,无热化问题将变得更为复杂。尽管如此,其基本原理保持不变:主镜光焦度的变化速率与次镜光焦度不同,且必须选择合适的镜筒材料以确保图像对焦。在极端温度条件下使用时,这种被动无热化的反射系统除了可能出现散焦外,还可能产生其他像差。此外,反射系统的离轴性能有限,不适用于轴外视场较大的情况。
-
光学镜头核心性能参数检测技术与工业应用研究
光学镜头作为光电系统的核心组件,其性能直接决定成像质量的技术上限。在工业级应用场景中,完整的质量检测体系需遵循“外观初筛—光学参数验证—机械尺寸确认—综合报告生成”的闭环检测流程。典型检测流程如下:外观缺陷检测→焦距/后焦精度测定→MTF分辨率验证→视场角标定→畸变/色差分析→机械尺寸复检→数据归档与报告生成该流程覆盖光学性能指标(如焦距、MTF)与机械兼容性参数(如法兰距、螺纹规格),形成对镜头性能的全维度量化评估。
2025-05-27
-
光的折射与双折射现象的理论解析及应用探讨
在光学领域,光的折射与反射现象是基础且重要的研究内容。当光抵达两种介质的交界面时,可能同时发生反射与折射。反射现象表现为光线返回原介质,且反射角始终与入射角相等;折射现象则是光线进入新介质后,因介质折射率差异导致传播方向改变的过程。这两种光学现象均发生于入射面内,即入射光线与界面法线所构成的平面。
2025-05-27
-
光纤激光器高阶效应研究重要进展:基于人工智能的逆向分析方法揭示超快脉冲物理机制
在光电子与超快光学领域,飞秒级光纤激光器的高阶色散与非线性效应解析一直是国际研究的前沿与难点。传统正向数值模拟方法在动态捕捉超短脉冲演化过程中的高阶效应时存在显著局限性,且系统中高阶物理效应系数的精确提取缺乏有效手段。佛山大学舒怡青博士、陈伟成教授团队在《ACSPhotonics》发表的最新研究中,构建了物理信息递归神经网络(Physics-InformedRecursiveNeuralNetwork,PIRNN)与介电质神经网络(DielectricNeuralNetwork,DielectricNet),实现了对光纤激光器中二阶至四阶色散、三阶至五阶非线性效应的逆向定量解析,并从介电质物理层面揭示了色散效应的本源机制。该研究为非保守系统的高阶效应分析提供了全新的跨学科研究范式。
2025-05-27
-
显示与感知的双重突破:GaNMicroLED与有机光电探测器共集成技术开启智能设备新维度
在消费电子深度融入生活的当下,多功能集成化成为技术演进的核心方向。2025年5月20日,欧洲微电子与纳米技术研究中心(CEALeti)在SIDDisplayWeek2025国际显示周上公布的一项突破性研究,为智能设备的交互革命奠定了关键基础——其成功实现氮化镓(GaN)MicroLED显示技术与有机光电探测器的异构共集成,让单一显示面板同时具备“视觉输出”与“环境感知”双重能力,标志着多功能显示器从概念迈向现实。
2025-05-26