什么是离轴光学系统?
离轴光学系统是一种光圈的光轴与光圈的机械中心并不重合的光学体系。离轴光学系统运用的原则是避免二次光学元件、仪器包裹或感测器遮蔽到主光圈,而且提供仪器套装软体或感测器随时进入焦点。离轴光学体系的工程考量是影像畸变的增量。

一、关于光轴
光轴是光学系统中,一条假想的线,界定(在一次近似下)光学系统怎么传导光线。光线若和光轴重合,在光学系统中光将沿光轴传递。
若此光学系统有一定程度的转动对称(像相机镜头或是显微镜),光轴一般会是光学系统的旋转中心,若光学系统是由简单的透镜和反射镜组成,光轴会经过各平面的曲率中心(如焦点),和转动对称轴重合。光轴一般会和系统的机械中心重合,但也有破例,例如离轴光学系统。
若光线和光轴角度很小,而光线接近光学体系的轴,能够用几何光学中的近轴近似来处理,能够简化数学的运算。
在光纤中,光轴会和纤维芯重合,也称为光纤轴。
二、关于光圈
光圈,是照相机上用来操控镜头孔径巨细的部件,以操控景深、镜头成像质素、以及和快门协同操控进光量。有时也表明光圈值的概念。表达光圈巨细用f值表明,关于已经制造好的镜头,不能随意改动镜头的直径,可是能够经过在镜头内部加入多边形或者圆型,而且面积可变的孔状光栅来到达操控镜头通光量,这个装置就叫做光圈,光圈f值=镜头的焦距/光圈口径。
离轴光学系统的优势
1.更广阔的视场
离轴光学系统经过运用非对称的光学元件,能够明显扩展视场范围,使得观察者能够获得更广阔的视野。这关于航天、地理、航空等领域的观测和导航具有重要意义。
2.优秀的像差纠正能力
离轴光学系统能够有效地纠正各种类型的像差,包含像散和球差。像差是光学系统中的一个重要问题,会导致图画模糊、畸变等问题。而离轴光学系统经过优化非对称的光学元件的规划,能够有效地减少这些影响,进步图画的质量和清晰度。
3.紧凑的规划
比较于传统的轴对称光学系统,离轴光学系统采用非对称的规划,能够将光路缩短、元件减少,然后完成更细巧、轻便的光学体系。这种紧凑的规划有助于减少整个体系的体积和分量,使其更适用于各种使用场景。
4.无遮拦、信噪比高
离轴反射系统比较于同轴反射系统,具有无遮拦、信噪比高级长处,这有助于进步光学系统的实践使用功能。
综上所述,离轴光学系统在扩展视场、纠正像差、完成紧凑规划以及进步信噪比等方面具有明显优势,因此在航天、地理、航空、无人驾驶等领域有着广泛的使用前景。
延伸阅览:
调节光学系统共轴的要求首要包含以下几点:
光轴、物体、透镜和像都在同一直线上:这是为了确保光线尽可能垂直地穿过光学元件,以获得更好的成像质量。
运用调理器调整光学元件:确保光线垂直穿过,并运用目视或其他仪器检查是否到达共轴。
公共的主光轴:各个透镜应调理到有公共的主光轴,而且该主光轴应与导轨平行。
粗调和细调:共轴调理分为粗调和细调两个过程。
物点与透镜共轴等高:如果达不到这一点,所成的像可能会偏离主光轴,导致数据丈量不精确。
以上要求确保了光学系统在试验或使用中的精确性和成像质量。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
