什么是光学晶体材料?光学晶体有什么用途?
在我们的日常生活中,光学晶体可能是一个陌生的词汇,但它却在光学镜头原材料制造中有重要的作用。那么,什么是光学晶体呢?简单来说,光学晶体就是一种特殊的晶体材料,它被广泛地应用于光学领域,比如制作紫外和红外区域的窗口、透镜和棱镜等。
让我们来了解一下光学晶体的分类吧!按照晶体结构的不同,光学晶体可以分为单晶和多晶两大类。其中,单晶材料因其具有高的晶体完整性、光透过率和低的输入损耗而成为主流选择。
下面我们来详细看看各类光学晶体的特点及应用吧!
一、卤化物单晶
卤化物单晶主要包括氟化物单晶、溴、氯、碘的化合物单晶以及铊的卤化物单晶。氟化物单晶在紫外、可见和红外波段光谱区都有很高的透过率,但是它的缺点也不少,比如膨胀系数大、热导率低、抗冲击性能差等。而溴、氯、碘的化合物单晶则能透过很宽的红外波段,熔点低,易于制成大尺寸单晶,但易潮解、硬度低、力学性能差。铊的卤化物单晶具有很宽的红外光谱透过波段,微溶于水,是一种在较低温度下使用的探测器窗口和透镜材料,但存在冷流变性,易受热腐蚀,且有毒性。
二、氧化物单晶
氧化物单晶主要包括蓝宝石(Al2O3)、水晶(SiO2)、氧化镁(MgO)和金红石(TiO2)等。与卤化物单晶相比,氧化物单晶的熔点高、化学稳定性好,在可见和近红外光谱区透过性能良好,可用于制造从紫外到红外定心仪等各种光学元件。
三、半导体单晶
半导体单晶包括单质晶体(如锗单晶、硅单晶),Ⅱ-Ⅵ族半导体单晶,Ⅲ-Ⅴ族半导体单晶和金刚石等。金刚石是光谱透过波段最长的晶体,可延长到远红外区,并具有较高的熔点、高硬度和优良的物理性能及化学稳定性。半导体单晶可以用作红外窗口材料、红外滤光片及其他光学元件。
希望这篇文章能让你对光学晶体有一个更全面的了解!
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15