什么是光学晶体材料?光学晶体有什么用途?
在我们的日常生活中,光学晶体可能是一个陌生的词汇,但它却在光学镜头原材料制造中有重要的作用。那么,什么是光学晶体呢?简单来说,光学晶体就是一种特殊的晶体材料,它被广泛地应用于光学领域,比如制作紫外和红外区域的窗口、透镜和棱镜等。
让我们来了解一下光学晶体的分类吧!按照晶体结构的不同,光学晶体可以分为单晶和多晶两大类。其中,单晶材料因其具有高的晶体完整性、光透过率和低的输入损耗而成为主流选择。
下面我们来详细看看各类光学晶体的特点及应用吧!

一、卤化物单晶
卤化物单晶主要包括氟化物单晶、溴、氯、碘的化合物单晶以及铊的卤化物单晶。氟化物单晶在紫外、可见和红外波段光谱区都有很高的透过率,但是它的缺点也不少,比如膨胀系数大、热导率低、抗冲击性能差等。而溴、氯、碘的化合物单晶则能透过很宽的红外波段,熔点低,易于制成大尺寸单晶,但易潮解、硬度低、力学性能差。铊的卤化物单晶具有很宽的红外光谱透过波段,微溶于水,是一种在较低温度下使用的探测器窗口和透镜材料,但存在冷流变性,易受热腐蚀,且有毒性。
二、氧化物单晶
氧化物单晶主要包括蓝宝石(Al2O3)、水晶(SiO2)、氧化镁(MgO)和金红石(TiO2)等。与卤化物单晶相比,氧化物单晶的熔点高、化学稳定性好,在可见和近红外光谱区透过性能良好,可用于制造从紫外到红外定心仪等各种光学元件。
三、半导体单晶
半导体单晶包括单质晶体(如锗单晶、硅单晶),Ⅱ-Ⅵ族半导体单晶,Ⅲ-Ⅴ族半导体单晶和金刚石等。金刚石是光谱透过波段最长的晶体,可延长到远红外区,并具有较高的熔点、高硬度和优良的物理性能及化学稳定性。半导体单晶可以用作红外窗口材料、红外滤光片及其他光学元件。
希望这篇文章能让你对光学晶体有一个更全面的了解!
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
