什么是光学晶体材料?光学晶体有什么用途?
在我们的日常生活中,光学晶体可能是一个陌生的词汇,但它却在光学镜头原材料制造中有重要的作用。那么,什么是光学晶体呢?简单来说,光学晶体就是一种特殊的晶体材料,它被广泛地应用于光学领域,比如制作紫外和红外区域的窗口、透镜和棱镜等。
让我们来了解一下光学晶体的分类吧!按照晶体结构的不同,光学晶体可以分为单晶和多晶两大类。其中,单晶材料因其具有高的晶体完整性、光透过率和低的输入损耗而成为主流选择。
下面我们来详细看看各类光学晶体的特点及应用吧!

一、卤化物单晶
卤化物单晶主要包括氟化物单晶、溴、氯、碘的化合物单晶以及铊的卤化物单晶。氟化物单晶在紫外、可见和红外波段光谱区都有很高的透过率,但是它的缺点也不少,比如膨胀系数大、热导率低、抗冲击性能差等。而溴、氯、碘的化合物单晶则能透过很宽的红外波段,熔点低,易于制成大尺寸单晶,但易潮解、硬度低、力学性能差。铊的卤化物单晶具有很宽的红外光谱透过波段,微溶于水,是一种在较低温度下使用的探测器窗口和透镜材料,但存在冷流变性,易受热腐蚀,且有毒性。
二、氧化物单晶
氧化物单晶主要包括蓝宝石(Al2O3)、水晶(SiO2)、氧化镁(MgO)和金红石(TiO2)等。与卤化物单晶相比,氧化物单晶的熔点高、化学稳定性好,在可见和近红外光谱区透过性能良好,可用于制造从紫外到红外定心仪等各种光学元件。
三、半导体单晶
半导体单晶包括单质晶体(如锗单晶、硅单晶),Ⅱ-Ⅵ族半导体单晶,Ⅲ-Ⅴ族半导体单晶和金刚石等。金刚石是光谱透过波段最长的晶体,可延长到远红外区,并具有较高的熔点、高硬度和优良的物理性能及化学稳定性。半导体单晶可以用作红外窗口材料、红外滤光片及其他光学元件。
希望这篇文章能让你对光学晶体有一个更全面的了解!
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
