【光学前沿资讯】面发射半导体激光器实现效率突破
自问世以来,边发射激光器(EEL)技术的功率转换效率(PCE)不断刷新纪录,2006年在-50°C温度下达到85%的历史最高效率。随后,在2007年,EEL在室温下也达到了76%的高效率。然而,在随后的15年里,再也没有人创造新的效率记录,这些成就一直是半导体激光器的巅峰。
相比之下,垂直腔面发射激光器(VCSEL)的效率提高则较为缓慢。自2009年报告了62%的最高PCE以来,一直没有重大突破,凸显了VCSEL和EEL之间明显的性能差距。作为一种微腔激光器,在光子学领域实现高效转换一直是VCSEL面临的挑战。
由于功率和效率较低,VCSEL的早期应用主要集中在小型、低功率消费电子产品和数据中心的短距离通信领域。近年来,随着智能技术的发展,低功耗VCSEL已成为智能传感系统的关键核心光源芯片,在人脸识别和短距离传感领域得到了广泛应用,并取得了显著成效。
最近,先进人工智能技术的快速发展揭示了VCSEL在传感、通信、原子钟、光学/量子计算、拓扑激光和医疗诊断等领域的巨大潜力。特别是自动驾驶对远距离传感技术的需求、高速数据处理中心对人工智能计算能力的需求以及VCSEL在智能和量子技术应用领域的发展,都凸显了能耗这一核心问题的重要性。
VCSEL的能效对移动设备和数据中心的能耗有重大影响。因此,开发超高能效VCSEL对于支持未来智能时代终端设备的发展至关重要,并在推动绿色能源光子学的发展方面发挥着重要作用。
在发表于《光:科学与应用》(Light:Science&Applications)上发表的一篇新论文中,四川大学电子信息学院及长光华芯的王俊教授研究团队利用多结级联有源区技术实现了VCSEL效率的突破。
通过采用反向隧道结实现有源区级联,增益体积得以增加。这种设计策略允许载流子经历多个受激发射过程,从而不仅提高了器件的微分量子效率,而且保持了较低的阈值电流。
因此,近年来,大量研究人员利用多结VCSEL实现了指数级功率增长,使VCSEL成为自动驾驶汽车激光雷达的可行激光源。然而,多结VCSEL最大的潜在优势应该是其显著的效率提高。
因此,研究人员结合理论模拟和实验进行了一项系统研究,以探讨多结VCSEL在电光转换效率方面的优势。
研究小组模拟了多结VCSEL的缩放特性,并与单结VCSEL的缩放特性进行了比较。数值模拟表明,在环境温度条件下,20结VCSEL的电光转换效率可超过88%。
在实验中,15结VCSEL在室温条件下的电光转换效率达到74%,斜率效率为15.6W/A,相当于超过1100%的差量子效率。研究人员认为,这一电光转换效率是迄今为止VCSEL领域报告的最高效率,而这一差分量子效率也是半导体激光器领域报告的最高效率。
正如审稿人所说:“这的确是在一个长期停滞不前的领域取得的重大突破。”
该研究的作者写道:“未来,我们还计划探索和拓展高效率、高功率多结VCSEL在通信领域的应用。这项研究不仅为VCSEL的进一步优化和应用提供了宝贵的理论和实验依据,也为高PCE半导体激光器的进一步开发和应用提供了有价值的参考。它有望对绿色能源光子学和激光物理学产生重大影响。”
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15