什么是显微干涉技术,显微干涉技术工作原理
光学显微干涉技术是一种先进的三维重建技术,它通过分析干涉条纹与物体表面高度之间的关联来实现对物体表面形貌的精确测量。这项技术的核心在于利用光源产生的干涉现象,通过特定的算法处理,转化为对物体表面高度信息的精确描述。

在光学显微干涉技术中,激光干涉术和白光干涉术是两种主要的分支。激光干涉术采用单色光源,通过精确控制光路,使得光束在经过被测物体表面和参考镜后,能够在特定位置形成清晰的干涉条纹。这些条纹随后被高灵敏度的相机捕获,并通过相移算法对条纹图的相位信息进行提取。通过解析相位信息与光程差之间的关系,可以准确地还原出物体表面的三维形态。
激光干涉术的优势在于其测量的高精度和快速性,同时对于环境光的强度变化不敏感,这使得它在多种测量场景下都能保持稳定的性能。然而,激光干涉术也存在一定的局限性,即在面对高度差异较大的非连续表面时,由于“相位模糊”现象,其测量能力会受到限制。
与激光干涉术相比,白光干涉术采用了宽光谱的白光作为光源,这种光源的相干长度较短,因此干涉条纹的形成范围有限,仅在非常接近零光程差的条件下才能观察到。这种特性使得白光干涉术在处理非连续台阶结构的表面时具有独特的优势,能够有效地克服相位模糊问题,实现对复杂表面的精确测量。
总的来说,光学显微干涉技术通过巧妙地利用光的干涉特性,为物体表面形貌的三维重建提供了一种高效、精确的解决方案。无论是激光干涉术还是白光干涉术,它们都在各自的应用领域内展现出了卓越的性能,为科学研究和工业测量带来了巨大的便利。
以上就是“什么是显微干涉技术,显微干涉技术工作原理”的相关介绍,如果您想要了解更多关于光学设备的知识,欢迎关注欧光科技。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
